SuperExpert / tools /legacy /offline_graph_rag_tool copy.py
JarvisChan630's picture
fix bugs
49bd427
# Hybird RAG, combining "similarity search" & "knowledge graph"
import sys
import os
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.insert(0, root_dir)
import concurrent.futures
import functools
import numpy as np
import faiss
import traceback
import tempfile
from typing import Dict, List
from termcolor import colored
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_community.graphs import Neo4jGraph
from langchain_experimental.graph_transformers.llm import LLMGraphTransformer
# from langchain_community.vectorstores.neo4j_vector import Neo4jVector
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_community.vectorstores import FAISS
from flashrank import Ranker, RerankRequest
from llmsherpa.readers import LayoutPDFReader
from langchain.schema import Document
from config.load_configs import load_config
from langchain_community.docstore.in_memory import InMemoryDocstore
from fake_useragent import UserAgent
from dotenv import load_dotenv
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.insert(0, root_dir)
# config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'config.yaml')
# load_config(config_path)
load_dotenv()
ua = UserAgent()
os.environ["USER_AGENT"] = ua.random
os.environ["FAISS_OPT_LEVEL"] = "generic"
def timeout(max_timeout):
"""Timeout decorator, parameter in seconds."""
def timeout_decorator(item):
"""Wrap the original function."""
@functools.wraps(item)
def func_wrapper(*args, **kwargs):
"""Closure for function."""
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(item, *args, **kwargs)
try:
return future.result(max_timeout)
except concurrent.futures.TimeoutError:
return [Document(page_content=f"Timeout occurred while processing URL: {args[0]}", metadata={"source": args[0]})]
return func_wrapper
return timeout_decorator
# Change: Added function to deduplicate re-ranked results.
def deduplicate_results(results, rerank=True):
seen = set()
unique_results = []
for result in results:
# Create a tuple of the content and source to use as a unique identifier
if rerank:
identifier = (result['text'], result['meta'])
else:
# When not reranking, result is a tuple (doc, score)
doc, score = result
identifier = (doc.page_content, doc.metadata.get('source', ''))
if identifier not in seen:
seen.add(identifier)
unique_results.append(result)
return unique_results
def index_and_rank(corpus: List[Document], query: str, top_percent: float = 20, batch_size: int = 25) -> List[Dict[str, str]]:
print(colored(f"\n\nStarting indexing and ranking with FastEmbeddings and FAISS for {len(corpus)} documents\n\n", "green"))
CACHE_DIR = "/app/fastembed_cache"
embeddings = FastEmbedEmbeddings(model_name='jinaai/jina-embeddings-v2-small-en', max_length=512, cache_dir=CACHE_DIR)
print(colored("\n\nCreating FAISS index...\n\n", "green"))
try:
# Initialize an empty FAISS index
index = None
docstore = InMemoryDocstore({})
index_to_docstore_id = {}
# Process documents in batches
for i in range(0, len(corpus), batch_size):
batch = corpus[i:i+batch_size]
texts = [doc.page_content for doc in batch]
metadatas = [doc.metadata for doc in batch]
print(f"Processing batch {i // batch_size + 1} with {len(texts)} documents")
# Embed the batch
batch_embeddings = embeddings.embed_documents(texts)
# Convert embeddings to numpy array with float32 dtype
batch_embeddings_np = np.array(batch_embeddings, dtype=np.float32)
if index is None:
# Create the index with the first batch
index = faiss.IndexFlatIP(batch_embeddings_np.shape[1])
# Normalize the embeddings
faiss.normalize_L2(batch_embeddings_np)
# Add embeddings to the index
start_id = len(index_to_docstore_id)
index.add(batch_embeddings_np)
# Update docstore and index_to_docstore_id
for j, (text, metadata) in enumerate(zip(texts, metadatas)):
doc_id = f"{start_id + j}"
docstore.add({doc_id: Document(page_content=text, metadata=metadata)})
index_to_docstore_id[start_id + j] = doc_id
print(f"Total documents indexed: {len(index_to_docstore_id)}")
# Create a FAISS retriever
retriever = FAISS(embeddings, index, docstore, index_to_docstore_id)
# Perform the search
k = min(40, len(corpus)) # Ensure we don't try to retrieve more documents than we have
# Change: Retrieve documents based on query in metadata
similarity_cache = {}
docs = []
for doc in corpus:
query = doc.metadata.get('query', '')
# Check if we've already performed this search
if query in similarity_cache:
cached_results = similarity_cache[query]
docs.extend(cached_results)
else:
# Perform the similarity search
search_results = retriever.similarity_search_with_score(query, k=k)
# Cache the results
similarity_cache[query] = search_results
# Add to docs
docs.extend(search_results)
docs = deduplicate_results(docs, rerank=False)
print(colored(f"\n\nRetrieved {len(docs)} documents\n\n", "green"))
passages = []
for idx, (doc, score) in enumerate(docs, start=1):
try:
passage = {
"id": idx,
"text": doc.page_content,
"meta": doc.metadata.get("source", {"source": "unknown"}),
"score": float(score) # Convert score to float
}
passages.append(passage)
except Exception as e:
print(colored(f"Error in creating passage: {str(e)}", "red"))
traceback.print_exc()
print(colored("\n\nRe-ranking documents...\n\n", "green"))
# Change: reranker done based on query in metadata
CACHE_DIR_RANKER = "/app/reranker_cache"
ranker = Ranker(cache_dir=CACHE_DIR_RANKER)
results = []
processed_queries = set()
# Perform reranking with query caching
for doc in corpus:
query = doc.metadata.get('query', '')
# Skip if we've already processed this query
if query in processed_queries:
continue
rerankrequest = RerankRequest(query=query, passages=passages)
result = ranker.rerank(rerankrequest)
results.extend(result)
# Mark this query as processed
processed_queries.add(query)
results = deduplicate_results(results, rerank=True)
print(colored(f"\n\nRe-ranking complete with {len(results)} documents\n\n", "green"))
# Sort results by score in descending order
sorted_results = sorted(results, key=lambda x: x['score'], reverse=True)
# Calculate the number of results to return based on the percentage
num_results = max(1, int(len(sorted_results) * (top_percent / 100)))
top_results = sorted_results[:num_results]
final_results = [
{
"text": result['text'],
"meta": result['meta'],
"score": result['score']
}
for result in top_results
]
print(colored(f"\n\nReturned top {top_percent}% of results ({len(final_results)} documents)\n\n", "green"))
# Add debug information about scores
scores = [result['score'] for result in results]
print(f"Score distribution: min={min(scores):.4f}, max={max(scores):.4f}, mean={np.mean(scores):.4f}, median={np.median(scores):.4f}")
print(f"Unique scores: {len(set(scores))}")
if final_results:
print(f"Score range for top {top_percent}% results: {final_results[-1]['score']:.4f} to {final_results[0]['score']:.4f}")
except Exception as e:
print(colored(f"Error in indexing and ranking: {str(e)}", "red"))
traceback.print_exc()
final_results = [{"text": "Error in indexing and ranking", "meta": {"source": "unknown"}, "score": 0.0}]
return final_results
def run_hybrid_graph_retrrieval(graph: Neo4jGraph = None, corpus: List[Document] = None, query: str = None, hybrid: bool = False):
print(colored(f"\n\Initiating Retrieval...\n\n", "green"))
if hybrid:
print(colored("Running Hybrid Retrieval...", "yellow"))
unstructured_data = index_and_rank(corpus, query)
# We only feed > 30 to jar3d, subset
query = f"""
MATCH p = (n)-[r]->(m)
WHERE COUNT {{(n)--()}} > 30
RETURN p AS Path
LIMIT 85
"""
response = graph.query(query)
retrieved_context = f"Important Relationships:{response}\n\n Additional Context:{unstructured_data}"
else:
print(colored("Running Dense Only Retrieval...", "yellow"))
unstructured_data = index_and_rank(corpus, query)
retrieved_context = f"Additional Context:{unstructured_data}"
return retrieved_context
# The chunking process begins with the intelligent_chunking function, which takes a URL and a query as input parameters.
@timeout(20) # Change: Takes url and query as input
def intelligent_chunking(url: str, query: str) -> List[Document]:
try:
print(colored(f"\n\nStarting Intelligent Chunking with LLM Sherpa for URL: {url}\n\n", "green"))
llmsherpa_api_url = os.environ.get('LLM_SHERPA_SERVER')
if not llmsherpa_api_url:
raise ValueError("LLM_SHERPA_SERVER environment variable is not set")
corpus = []
#The function utilizes LayoutPDFReader to read and extract text from the specified PDF document located at the given URL.
#This is done by calling the LLM Sherpa API, which handles the PDF reading and layout analysis.
#
try:
print(colored("Starting LLM Sherpa LayoutPDFReader...\n\n", "yellow"))
reader = LayoutPDFReader(llmsherpa_api_url)
doc = reader.read_pdf(url)
print(colored("Finished LLM Sherpa LayoutPDFReader...\n\n", "yellow"))
except Exception as e:
print(colored(f"Error in LLM Sherpa LayoutPDFReader: {str(e)}", "red"))
traceback.print_exc()
doc = None
# Once the document is retrieved, it is processed into smaller, manageable chunks. Each chunk represents a segment of the document that retains semantic meaning and context.
if doc:
for chunk in doc.chunks():
document = Document(
page_content=chunk.to_context_text(),
metadata={"source": url, "query": query} # Change: Added query to metadata
)
if len(document.page_content) > 30:
corpus.append(document)
print(colored(f"Created corpus with {len(corpus)} documents", "green"))
if not doc:
print(colored(f"No document to append to corpus", "red"))
# print(colored(f"DEBUG: Corpus: {corpus}", "yellow"))
return corpus
except concurrent.futures.TimeoutError:
print(colored(f"Timeout occurred while processing URL: {url}", "red"))
return [Document(page_content=f"Timeout occurred while processing URL: {url}", metadata={"source": url})]
except Exception as e:
print(colored(f"Error in Intelligent Chunking for URL {url}: {str(e)}", "red"))
traceback.print_exc()
return [Document(page_content=f"Error in Intelligent Chunking for URL: {url}", metadata={"source": url})]
def clear_neo4j_database(graph: Neo4jGraph):
"""
Clear all nodes and relationships from the Neo4j database.
"""
try:
print(colored("\n\nClearing Neo4j database...\n\n", "yellow"))
# Delete all relationships first
graph.query("MATCH ()-[r]->() DELETE r")
# Then delete all nodes
graph.query("MATCH (n) DELETE n")
print(colored("Neo4j database cleared successfully.\n\n", "green"))
except Exception as e:
print(colored(f"Error clearing Neo4j database: {str(e)}", "red"))
traceback.print_exc()
def process_document(doc: Document, llm_transformer: LLMGraphTransformer, doc_num: int, total_docs: int) -> List:
print(colored(f"\n\nStarting Document {doc_num} of {total_docs}: {doc.page_content[:100]}\n\n", "yellow"))
graph_document = llm_transformer.convert_to_graph_documents([doc])
print(colored(f"\nFinished Document {doc_num}\n\n", "green"))
return graph_document
def create_graph_index(
documents: List[Document] = None,
allowed_relationships: list[str] = None,
allowed_nodes: list[str] = None,
query: str = None,
graph: Neo4jGraph = None,
max_threads: int = 5
) -> Neo4jGraph:
if os.environ.get('LLM_SERVER') == "openai":
# require hundreds calls to api
# we create index for every small chunk
llm = ChatOpenAI(temperature=0, model_name="gpt-4o-mini-2024-07-18")
else:
llm = ChatAnthropic(temperature=0, model_name="claude-3-haiku-20240307")
# llm = ChatAnthropic(temperature=0, model_name="claude-3-haiku-20240307")
llm_transformer = LLMGraphTransformer(
llm=llm,
allowed_nodes=allowed_nodes,
allowed_relationships=allowed_relationships,
node_properties=True,
relationship_properties=True
)
graph_documents = []
total_docs = len(documents)
# Use ThreadPoolExecutor for parallel processing
with concurrent.futures.ThreadPoolExecutor(max_workers=max_threads) as executor:
# Create a list of futures
futures = [
executor.submit(process_document, doc, llm_transformer, i+1, total_docs)
for i, doc in enumerate(documents)
]
# Process completed futures
for future in concurrent.futures.as_completed(futures):
graph_documents.extend(future.result())
print(colored(f"\n\nTotal graph documents: {len(graph_documents)}", "green"))
# print(colored(f"\n\DEBUG graph documents: {graph_documents}", "red"))
graph_documents = [graph_documents]
flattened_graph_list = [item for sublist in graph_documents for item in sublist]
# print(colored(f"\n\DEBUG Flattened graph documents: {flattened_graph_list}", "yellow"))
graph.add_graph_documents(
flattened_graph_list,
baseEntityLabel=True,
include_source=True,
)
return graph
def run_rag(urls: List[str], allowed_nodes: list[str] = None, allowed_relationships: list[str] = None, query: List[str] = None, hybrid: bool = False) -> List[Dict[str, str]]:
# Change: adapted to take query and url as input.
# Intellegent document chunking
with concurrent.futures.ThreadPoolExecutor(max_workers=min(len(urls), 5)) as executor:
futures = [executor.submit(intelligent_chunking, url, query) for url, query in zip(urls, query)]
chunks_list = [future.result() for future in concurrent.futures.as_completed(futures)]
corpus = [item for sublist in chunks_list for item in sublist]
print(colored(f"\n\nTotal documents in corpus after chunking: {len(corpus)}\n\n", "green"))
print(colored(f"\n\n DEBUG HYBRID VALUE: {hybrid}\n\n", "yellow"))
# combined with graph
if hybrid:
print(colored(f"\n\n Creating Graph Index...\n\n", "green"))
graph = Neo4jGraph()
clear_neo4j_database(graph)
graph = create_graph_index(documents=corpus, allowed_nodes=allowed_nodes, allowed_relationships=allowed_relationships, query=query, graph=graph)
else:
graph = None
retrieved_context = run_hybrid_graph_retrrieval(graph=graph, corpus=corpus, query=query, hybrid=hybrid)
retrieved_context = str(retrieved_context)
return retrieved_context
# if __name__ == "__main__":
# # For testing purposes.
# url1 = "https://www.reddit.com/r/microsoft/comments/1bkikl1/regretting_buying_copilot_for_microsoft_365"
# url2 = "'https://www.reddit.com/r/microsoft_365_copilot/comments/1chtqtg/do_you_actually_find_365_copilot_useful_in_your"
# # url3 = "https://developers.googleblog.com/en/new-features-for-the-gemini-api-and-google-ai-studio/"
# # query = "cheapest macbook"
# # urls = [url1, url2, url3]
# urls = [url1, url2]
# query = ["Co-pilot Microsoft"]
# allowed_nodes = None
# allowed_relationships = None
# hybrid = False
# results = run_rag(urls, allowed_nodes=allowed_nodes, allowed_relationships=allowed_relationships, query=query, hybrid=hybrid)
# print(colored(f"\n\n RESULTS: {results}", "green"))
# print(f"\n\n RESULTS: {results}")