Spaces:
Running
Running
import gradio as gr | |
import google.generativeai as genai | |
import os | |
from dotenv import load_dotenv | |
# Cargar variables de entorno | |
load_dotenv() | |
# Configurar la API de Google Gemini | |
genai.configure(api_key=os.getenv("GEMINI_API_KEY")) | |
def respond( | |
message, | |
history, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# Configurar el modelo de Gemini | |
model_name = "gemini-1.5-pro" # Ajusta el modelo según sea necesario | |
generation_config = { | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_output_tokens": max_tokens, | |
"response_mime_type": "text/plain", | |
} | |
model = genai.GenerativeModel(model_name=model_name, generation_config=generation_config) | |
chat_session = model.start_chat( | |
history=messages | |
) | |
response = chat_session.send_message(message) | |
return response.text | |
# Crear la interfaz de Gradio | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |