File size: 7,348 Bytes
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from ..modules.utils import convert_module_to_f16, convert_module_to_f32
from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock
from ..modules.spatial import patchify, unpatchify


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.

        Args:
            t: a 1-D Tensor of N indices, one per batch element.
                These may be fractional.
            dim: the dimension of the output.
            max_period: controls the minimum frequency of the embeddings.

        Returns:
            an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


class SparseStructureFlowModel(nn.Module):
    def __init__(
        self,
        resolution: int,
        in_channels: int,
        model_channels: int,
        cond_channels: int,
        out_channels: int,
        num_blocks: int,
        num_heads: Optional[int] = None,
        num_head_channels: Optional[int] = 64,
        mlp_ratio: float = 4,
        patch_size: int = 2,
        pe_mode: Literal["ape", "rope"] = "ape",
        use_fp16: bool = False,
        use_checkpoint: bool = False,
        share_mod: bool = False,
        qk_rms_norm: bool = False,
        qk_rms_norm_cross: bool = False,
    ):
        super().__init__()
        self.resolution = resolution
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.cond_channels = cond_channels
        self.out_channels = out_channels
        self.num_blocks = num_blocks
        self.num_heads = num_heads or model_channels // num_head_channels
        self.mlp_ratio = mlp_ratio
        self.patch_size = patch_size
        self.pe_mode = pe_mode
        self.use_fp16 = use_fp16
        self.use_checkpoint = use_checkpoint
        self.share_mod = share_mod
        self.qk_rms_norm = qk_rms_norm
        self.qk_rms_norm_cross = qk_rms_norm_cross
        self.dtype = torch.float16 if use_fp16 else torch.float32

        self.t_embedder = TimestepEmbedder(model_channels)
        if share_mod:
            self.adaLN_modulation = nn.Sequential(
                nn.SiLU(),
                nn.Linear(model_channels, 6 * model_channels, bias=True)
            )

        if pe_mode == "ape":
            pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
            coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij')
            coords = torch.stack(coords, dim=-1).reshape(-1, 3)
            pos_emb = pos_embedder(coords)
            self.register_buffer("pos_emb", pos_emb)

        self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
            
        self.blocks = nn.ModuleList([
            ModulatedTransformerCrossBlock(
                model_channels,
                cond_channels,
                num_heads=self.num_heads,
                mlp_ratio=self.mlp_ratio,
                attn_mode='full',
                use_checkpoint=self.use_checkpoint,
                use_rope=(pe_mode == "rope"),
                share_mod=share_mod,
                qk_rms_norm=self.qk_rms_norm,
                qk_rms_norm_cross=self.qk_rms_norm_cross,
            )
            for _ in range(num_blocks)
        ])

        self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)

        self.initialize_weights()
        if use_fp16:
            self.convert_to_fp16()

    @property
    def device(self) -> torch.device:
        """
        Return the device of the model.
        """
        return next(self.parameters()).device

    def convert_to_fp16(self) -> None:
        """
        Convert the torso of the model to float16.
        """
        self.blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self) -> None:
        """
        Convert the torso of the model to float32.
        """
        self.blocks.apply(convert_module_to_f32)

    def initialize_weights(self) -> None:
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        if self.share_mod:
            nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
        else:
            for block in self.blocks:
                nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
                nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.out_layer.weight, 0)
        nn.init.constant_(self.out_layer.bias, 0)

    def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
        assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \
                f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}"

        h = patchify(x, self.patch_size)
        h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()

        h = self.input_layer(h)
        h = h + self.pos_emb[None]
        t_emb = self.t_embedder(t)
        if self.share_mod:
            t_emb = self.adaLN_modulation(t_emb)
        t_emb = t_emb.type(self.dtype)
        h = h.type(self.dtype)
        cond = cond.type(self.dtype)
        for block in self.blocks:
            h = block(h, t_emb, cond)
        h = h.type(x.dtype)
        h = F.layer_norm(h, h.shape[-1:])
        h = self.out_layer(h)

        h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3)
        h = unpatchify(h, self.patch_size).contiguous()

        return h