Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,075 Bytes
db6a3b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
from typing import *
import torch
import math
from .. import SparseTensor
from .. import DEBUG, ATTN
if ATTN == 'xformers':
import xformers.ops as xops
elif ATTN == 'flash_attn':
import flash_attn
else:
raise ValueError(f"Unknown attention module: {ATTN}")
__all__ = [
'sparse_windowed_scaled_dot_product_self_attention',
]
def calc_window_partition(
tensor: SparseTensor,
window_size: Union[int, Tuple[int, ...]],
shift_window: Union[int, Tuple[int, ...]] = 0
) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]:
"""
Calculate serialization and partitioning for a set of coordinates.
Args:
tensor (SparseTensor): The input tensor.
window_size (int): The window size to use.
shift_window (Tuple[int, ...]): The shift of serialized coordinates.
Returns:
(torch.Tensor): Forwards indices.
(torch.Tensor): Backwards indices.
(List[int]): Sequence lengths.
(List[int]): Sequence batch indices.
"""
DIM = tensor.coords.shape[1] - 1
shift_window = (shift_window,) * DIM if isinstance(shift_window, int) else shift_window
window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size
shifted_coords = tensor.coords.clone().detach()
shifted_coords[:, 1:] += torch.tensor(shift_window, device=tensor.device, dtype=torch.int32).unsqueeze(0)
MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist()
NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)]
OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1]
shifted_coords[:, 1:] //= torch.tensor(window_size, device=tensor.device, dtype=torch.int32).unsqueeze(0)
shifted_indices = (shifted_coords * torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0)).sum(dim=1)
fwd_indices = torch.argsort(shifted_indices)
bwd_indices = torch.empty_like(fwd_indices)
bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device)
seq_lens = torch.bincount(shifted_indices)
seq_batch_indices = torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32) // OFFSET[0]
mask = seq_lens != 0
seq_lens = seq_lens[mask].tolist()
seq_batch_indices = seq_batch_indices[mask].tolist()
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
def sparse_windowed_scaled_dot_product_self_attention(
qkv: SparseTensor,
window_size: int,
shift_window: Tuple[int, int, int] = (0, 0, 0)
) -> SparseTensor:
"""
Apply windowed scaled dot product self attention to a sparse tensor.
Args:
qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
window_size (int): The window size to use.
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
shift (int): The shift to use.
"""
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
serialization_spatial_cache_name = f'window_partition_{window_size}_{shift_window}'
serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
if serialization_spatial_cache is None:
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(qkv, window_size, shift_window)
qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
else:
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
M = fwd_indices.shape[0]
T = qkv.feats.shape[0]
H = qkv.feats.shape[2]
C = qkv.feats.shape[3]
qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
if DEBUG:
start = 0
qkv_coords = qkv.coords[fwd_indices]
for i in range(len(seq_lens)):
seq_coords = qkv_coords[start:start+seq_lens[i]]
assert (seq_coords[:, 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
assert (seq_coords[:, 1:].max(dim=0).values - seq_coords[:, 1:].min(dim=0).values < window_size).all(), \
f"SparseWindowedScaledDotProductSelfAttention: window size exceeded"
start += seq_lens[i]
if all([seq_len == window_size for seq_len in seq_lens]):
B = len(seq_lens)
N = window_size
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
if ATTN == 'xformers':
q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
elif ATTN == 'flash_attn':
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
else:
raise ValueError(f"Unknown attention module: {ATTN}")
out = out.reshape(B * N, H, C) # [M, H, C]
else:
if ATTN == 'xformers':
q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
q = q.unsqueeze(0) # [1, M, H, C]
k = k.unsqueeze(0) # [1, M, H, C]
v = v.unsqueeze(0) # [1, M, H, C]
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
elif ATTN == 'flash_attn':
cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
.to(qkv.device).int()
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
out = out[bwd_indices] # [T, H, C]
if DEBUG:
qkv_coords = qkv_coords[bwd_indices]
assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
return qkv.replace(out)
|