File size: 8,258 Bytes
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from typing import *
from enum import Enum
import torch
import math
from .. import SparseTensor
from .. import DEBUG, ATTN

if ATTN == 'xformers':
    import xformers.ops as xops
elif ATTN == 'flash_attn':
    import flash_attn
else:
    raise ValueError(f"Unknown attention module: {ATTN}")


__all__ = [
    'sparse_serialized_scaled_dot_product_self_attention',
]


class SerializeMode(Enum):
    Z_ORDER = 0
    Z_ORDER_TRANSPOSED = 1
    HILBERT = 2
    HILBERT_TRANSPOSED = 3


SerializeModes = [
    SerializeMode.Z_ORDER,
    SerializeMode.Z_ORDER_TRANSPOSED,
    SerializeMode.HILBERT,
    SerializeMode.HILBERT_TRANSPOSED
]


def calc_serialization(
    tensor: SparseTensor,
    window_size: int,
    serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
    shift_sequence: int = 0,
    shift_window: Tuple[int, int, int] = (0, 0, 0)
) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
    """
    Calculate serialization and partitioning for a set of coordinates.

    Args:
        tensor (SparseTensor): The input tensor.
        window_size (int): The window size to use.
        serialize_mode (SerializeMode): The serialization mode to use.
        shift_sequence (int): The shift of serialized sequence.
        shift_window (Tuple[int, int, int]): The shift of serialized coordinates.

    Returns:
        (torch.Tensor, torch.Tensor): Forwards and backwards indices.
    """
    fwd_indices = []
    bwd_indices = []
    seq_lens = []
    seq_batch_indices = []
    offsets = [0]
    
    if 'vox2seq' not in globals():
        import vox2seq

    # Serialize the input
    serialize_coords = tensor.coords[:, 1:].clone()
    serialize_coords += torch.tensor(shift_window, dtype=torch.int32, device=tensor.device).reshape(1, 3)
    if serialize_mode == SerializeMode.Z_ORDER:
        code = vox2seq.encode(serialize_coords, mode='z_order', permute=[0, 1, 2])
    elif serialize_mode == SerializeMode.Z_ORDER_TRANSPOSED:
        code = vox2seq.encode(serialize_coords, mode='z_order', permute=[1, 0, 2])
    elif serialize_mode == SerializeMode.HILBERT:
        code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[0, 1, 2])
    elif serialize_mode == SerializeMode.HILBERT_TRANSPOSED:
        code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[1, 0, 2])
    else:
        raise ValueError(f"Unknown serialize mode: {serialize_mode}")
    
    for bi, s in enumerate(tensor.layout):
        num_points = s.stop - s.start
        num_windows = (num_points + window_size - 1) // window_size
        valid_window_size = num_points / num_windows
        to_ordered = torch.argsort(code[s.start:s.stop])
        if num_windows == 1:
            fwd_indices.append(to_ordered)
            bwd_indices.append(torch.zeros_like(to_ordered).scatter_(0, to_ordered, torch.arange(num_points, device=tensor.device)))
            fwd_indices[-1] += s.start
            bwd_indices[-1] += offsets[-1]
            seq_lens.append(num_points)
            seq_batch_indices.append(bi)
            offsets.append(offsets[-1] + seq_lens[-1])
        else:
            # Partition the input
            offset = 0
            mids = [(i + 0.5) * valid_window_size + shift_sequence for i in range(num_windows)]
            split = [math.floor(i * valid_window_size + shift_sequence) for i in range(num_windows + 1)]
            bwd_index = torch.zeros((num_points,), dtype=torch.int64, device=tensor.device)
            for i in range(num_windows):
                mid = mids[i]
                valid_start = split[i]
                valid_end = split[i + 1]
                padded_start = math.floor(mid - 0.5 * window_size)
                padded_end = padded_start + window_size
                fwd_indices.append(to_ordered[torch.arange(padded_start, padded_end, device=tensor.device) % num_points])
                offset += valid_start - padded_start
                bwd_index.scatter_(0, fwd_indices[-1][valid_start-padded_start:valid_end-padded_start], torch.arange(offset, offset + valid_end - valid_start, device=tensor.device))
                offset += padded_end - valid_start
                fwd_indices[-1] += s.start
            seq_lens.extend([window_size] * num_windows)
            seq_batch_indices.extend([bi] * num_windows)
            bwd_indices.append(bwd_index + offsets[-1])
            offsets.append(offsets[-1] + num_windows * window_size)

    fwd_indices = torch.cat(fwd_indices)
    bwd_indices = torch.cat(bwd_indices)

    return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
    

def sparse_serialized_scaled_dot_product_self_attention(
    qkv: SparseTensor,
    window_size: int,
    serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
    shift_sequence: int = 0,
    shift_window: Tuple[int, int, int] = (0, 0, 0)
) -> SparseTensor:
    """
    Apply serialized scaled dot product self attention to a sparse tensor.

    Args:
        qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
        window_size (int): The window size to use.
        serialize_mode (SerializeMode): The serialization mode to use.
        shift_sequence (int): The shift of serialized sequence.
        shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
        shift (int): The shift to use.
    """
    assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"

    serialization_spatial_cache_name = f'serialization_{serialize_mode}_{window_size}_{shift_sequence}_{shift_window}'
    serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
    if serialization_spatial_cache is None:
        fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_serialization(qkv, window_size, serialize_mode, shift_sequence, shift_window)
        qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
    else:
        fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache

    M = fwd_indices.shape[0]
    T = qkv.feats.shape[0]
    H = qkv.feats.shape[2]
    C = qkv.feats.shape[3]
    
    qkv_feats = qkv.feats[fwd_indices]      # [M, 3, H, C]

    if DEBUG:
        start = 0
        qkv_coords = qkv.coords[fwd_indices]
        for i in range(len(seq_lens)):
            assert (qkv_coords[start:start+seq_lens[i], 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
            start += seq_lens[i]

    if all([seq_len == window_size for seq_len in seq_lens]):
        B = len(seq_lens)
        N = window_size
        qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
        if ATTN == 'xformers':
            q, k, v = qkv_feats.unbind(dim=2)                       # [B, N, H, C]
            out = xops.memory_efficient_attention(q, k, v)          # [B, N, H, C]
        elif ATTN == 'flash_attn':
            out = flash_attn.flash_attn_qkvpacked_func(qkv_feats)   # [B, N, H, C]
        else:
            raise ValueError(f"Unknown attention module: {ATTN}")
        out = out.reshape(B * N, H, C)                              # [M, H, C]
    else:
        if ATTN == 'xformers':
            q, k, v = qkv_feats.unbind(dim=1)                       # [M, H, C]
            q = q.unsqueeze(0)                                      # [1, M, H, C]
            k = k.unsqueeze(0)                                      # [1, M, H, C]
            v = v.unsqueeze(0)                                      # [1, M, H, C]
            mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
            out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
        elif ATTN == 'flash_attn':
            cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
                        .to(qkv.device).int()
            out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]

    out = out[bwd_indices]      # [T, H, C]

    if DEBUG:
        qkv_coords = qkv_coords[bwd_indices]
        assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"

    return qkv.replace(out)