Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from . import SparseTensor | |
__all__ = [ | |
'SparseReLU', | |
'SparseSiLU', | |
'SparseGELU', | |
'SparseActivation' | |
] | |
class SparseReLU(nn.ReLU): | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
return input.replace(super().forward(input.feats)) | |
class SparseSiLU(nn.SiLU): | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
return input.replace(super().forward(input.feats)) | |
class SparseGELU(nn.GELU): | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
return input.replace(super().forward(input.feats)) | |
class SparseActivation(nn.Module): | |
def __init__(self, activation: nn.Module): | |
super().__init__() | |
self.activation = activation | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
return input.replace(self.activation(input.feats)) | |