Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 | |
from ..modules.transformer import AbsolutePositionEmbedder | |
from ..modules.norm import LayerNorm32 | |
from ..modules import sparse as sp | |
from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock | |
from .sparse_structure_flow import TimestepEmbedder | |
class SparseResBlock3d(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
emb_channels: int, | |
out_channels: Optional[int] = None, | |
downsample: bool = False, | |
upsample: bool = False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.out_channels = out_channels or channels | |
self.downsample = downsample | |
self.upsample = upsample | |
assert not (downsample and upsample), "Cannot downsample and upsample at the same time" | |
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6) | |
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6) | |
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3) | |
self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3)) | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(emb_channels, 2 * self.out_channels, bias=True), | |
) | |
self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity() | |
self.updown = None | |
if self.downsample: | |
self.updown = sp.SparseDownsample(2) | |
elif self.upsample: | |
self.updown = sp.SparseUpsample(2) | |
def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor: | |
if self.updown is not None: | |
x = self.updown(x) | |
return x | |
def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor: | |
emb_out = self.emb_layers(emb).type(x.dtype) | |
scale, shift = torch.chunk(emb_out, 2, dim=1) | |
x = self._updown(x) | |
h = x.replace(self.norm1(x.feats)) | |
h = h.replace(F.silu(h.feats)) | |
h = self.conv1(h) | |
h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift | |
h = h.replace(F.silu(h.feats)) | |
h = self.conv2(h) | |
h = h + self.skip_connection(x) | |
return h | |
class SLatFlowModel(nn.Module): | |
def __init__( | |
self, | |
resolution: int, | |
in_channels: int, | |
model_channels: int, | |
cond_channels: int, | |
out_channels: int, | |
num_blocks: int, | |
num_heads: Optional[int] = None, | |
num_head_channels: Optional[int] = 64, | |
mlp_ratio: float = 4, | |
patch_size: int = 2, | |
num_io_res_blocks: int = 2, | |
io_block_channels: List[int] = None, | |
pe_mode: Literal["ape", "rope"] = "ape", | |
use_fp16: bool = False, | |
use_checkpoint: bool = False, | |
use_skip_connection: bool = True, | |
share_mod: bool = False, | |
qk_rms_norm: bool = False, | |
qk_rms_norm_cross: bool = False, | |
): | |
super().__init__() | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.cond_channels = cond_channels | |
self.out_channels = out_channels | |
self.num_blocks = num_blocks | |
self.num_heads = num_heads or model_channels // num_head_channels | |
self.mlp_ratio = mlp_ratio | |
self.patch_size = patch_size | |
self.num_io_res_blocks = num_io_res_blocks | |
self.io_block_channels = io_block_channels | |
self.pe_mode = pe_mode | |
self.use_fp16 = use_fp16 | |
self.use_checkpoint = use_checkpoint | |
self.use_skip_connection = use_skip_connection | |
self.share_mod = share_mod | |
self.qk_rms_norm = qk_rms_norm | |
self.qk_rms_norm_cross = qk_rms_norm_cross | |
self.dtype = torch.float16 if use_fp16 else torch.float32 | |
assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2" | |
assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages" | |
self.t_embedder = TimestepEmbedder(model_channels) | |
if share_mod: | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(model_channels, 6 * model_channels, bias=True) | |
) | |
if pe_mode == "ape": | |
self.pos_embedder = AbsolutePositionEmbedder(model_channels) | |
self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0]) | |
self.input_blocks = nn.ModuleList([]) | |
for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]): | |
self.input_blocks.extend([ | |
SparseResBlock3d( | |
chs, | |
model_channels, | |
out_channels=chs, | |
) | |
for _ in range(num_io_res_blocks-1) | |
]) | |
self.input_blocks.append( | |
SparseResBlock3d( | |
chs, | |
model_channels, | |
out_channels=next_chs, | |
downsample=True, | |
) | |
) | |
self.blocks = nn.ModuleList([ | |
ModulatedSparseTransformerCrossBlock( | |
model_channels, | |
cond_channels, | |
num_heads=self.num_heads, | |
mlp_ratio=self.mlp_ratio, | |
attn_mode='full', | |
use_checkpoint=self.use_checkpoint, | |
use_rope=(pe_mode == "rope"), | |
share_mod=self.share_mod, | |
qk_rms_norm=self.qk_rms_norm, | |
qk_rms_norm_cross=self.qk_rms_norm_cross, | |
) | |
for _ in range(num_blocks) | |
]) | |
self.out_blocks = nn.ModuleList([]) | |
for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))): | |
self.out_blocks.append( | |
SparseResBlock3d( | |
prev_chs * 2 if self.use_skip_connection else prev_chs, | |
model_channels, | |
out_channels=chs, | |
upsample=True, | |
) | |
) | |
self.out_blocks.extend([ | |
SparseResBlock3d( | |
chs * 2 if self.use_skip_connection else chs, | |
model_channels, | |
out_channels=chs, | |
) | |
for _ in range(num_io_res_blocks-1) | |
]) | |
self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels) | |
self.initialize_weights() | |
if use_fp16: | |
self.convert_to_fp16() | |
def device(self) -> torch.device: | |
""" | |
Return the device of the model. | |
""" | |
return next(self.parameters()).device | |
def convert_to_fp16(self) -> None: | |
""" | |
Convert the torso of the model to float16. | |
""" | |
self.input_blocks.apply(convert_module_to_f16) | |
self.blocks.apply(convert_module_to_f16) | |
self.out_blocks.apply(convert_module_to_f16) | |
def convert_to_fp32(self) -> None: | |
""" | |
Convert the torso of the model to float32. | |
""" | |
self.input_blocks.apply(convert_module_to_f32) | |
self.blocks.apply(convert_module_to_f32) | |
self.out_blocks.apply(convert_module_to_f32) | |
def initialize_weights(self) -> None: | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
if self.share_mod: | |
nn.init.constant_(self.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.adaLN_modulation[-1].bias, 0) | |
else: | |
for block in self.blocks: | |
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.out_layer.weight, 0) | |
nn.init.constant_(self.out_layer.bias, 0) | |
def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor) -> sp.SparseTensor: | |
h = self.input_layer(x).type(self.dtype) | |
t_emb = self.t_embedder(t) | |
if self.share_mod: | |
t_emb = self.adaLN_modulation(t_emb) | |
t_emb = t_emb.type(self.dtype) | |
cond = cond.type(self.dtype) | |
skips = [] | |
# pack with input blocks | |
for block in self.input_blocks: | |
h = block(h, t_emb) | |
skips.append(h.feats) | |
if self.pe_mode == "ape": | |
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype) | |
for block in self.blocks: | |
h = block(h, t_emb, cond) | |
# unpack with output blocks | |
for block, skip in zip(self.out_blocks, reversed(skips)): | |
if self.use_skip_connection: | |
h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb) | |
else: | |
h = block(h, t_emb) | |
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) | |
h = self.out_layer(h.type(x.dtype)) | |
return h | |