Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
import torch | |
import torch.nn as nn | |
from . import SparseTensor | |
__all__ = [ | |
'SparseDownsample', | |
'SparseUpsample', | |
'SparseSubdivide' | |
] | |
class SparseDownsample(nn.Module): | |
""" | |
Downsample a sparse tensor by a factor of `factor`. | |
Implemented as average pooling. | |
""" | |
def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]): | |
super(SparseDownsample, self).__init__() | |
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
DIM = input.coords.shape[-1] - 1 | |
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM | |
assert DIM == len(factor), 'Input coordinates must have the same dimension as the downsample factor.' | |
coord = list(input.coords.unbind(dim=-1)) | |
for i, f in enumerate(factor): | |
coord[i+1] = coord[i+1] // f | |
MAX = [coord[i+1].max().item() + 1 for i in range(DIM)] | |
OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1] | |
code = sum([c * o for c, o in zip(coord, OFFSET)]) | |
code, idx = code.unique(return_inverse=True) | |
new_feats = torch.scatter_reduce( | |
torch.zeros(code.shape[0], input.feats.shape[1], device=input.feats.device, dtype=input.feats.dtype), | |
dim=0, | |
index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]), | |
src=input.feats, | |
reduce='mean' | |
) | |
new_coords = torch.stack( | |
[code // OFFSET[0]] + | |
[(code // OFFSET[i+1]) % MAX[i] for i in range(DIM)], | |
dim=-1 | |
) | |
out = SparseTensor(new_feats, new_coords, input.shape,) | |
out._scale = tuple([s // f for s, f in zip(input._scale, factor)]) | |
out._spatial_cache = input._spatial_cache | |
out.register_spatial_cache(f'upsample_{factor}_coords', input.coords) | |
out.register_spatial_cache(f'upsample_{factor}_layout', input.layout) | |
out.register_spatial_cache(f'upsample_{factor}_idx', idx) | |
return out | |
class SparseUpsample(nn.Module): | |
""" | |
Upsample a sparse tensor by a factor of `factor`. | |
Implemented as nearest neighbor interpolation. | |
""" | |
def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]): | |
super(SparseUpsample, self).__init__() | |
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
DIM = input.coords.shape[-1] - 1 | |
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM | |
assert DIM == len(factor), 'Input coordinates must have the same dimension as the upsample factor.' | |
new_coords = input.get_spatial_cache(f'upsample_{factor}_coords') | |
new_layout = input.get_spatial_cache(f'upsample_{factor}_layout') | |
idx = input.get_spatial_cache(f'upsample_{factor}_idx') | |
if any([x is None for x in [new_coords, new_layout, idx]]): | |
raise ValueError('Upsample cache not found. SparseUpsample must be paired with SparseDownsample.') | |
new_feats = input.feats[idx] | |
out = SparseTensor(new_feats, new_coords, input.shape, new_layout) | |
out._scale = tuple([s * f for s, f in zip(input._scale, factor)]) | |
out._spatial_cache = input._spatial_cache | |
return out | |
class SparseSubdivide(nn.Module): | |
""" | |
Upsample a sparse tensor by a factor of `factor`. | |
Implemented as nearest neighbor interpolation. | |
""" | |
def __init__(self): | |
super(SparseSubdivide, self).__init__() | |
def forward(self, input: SparseTensor) -> SparseTensor: | |
DIM = input.coords.shape[-1] - 1 | |
# upsample scale=2^DIM | |
n_cube = torch.ones([2] * DIM, device=input.device, dtype=torch.int) | |
n_coords = torch.nonzero(n_cube) | |
n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1) | |
factor = n_coords.shape[0] | |
assert factor == 2 ** DIM | |
# print(n_coords.shape) | |
new_coords = input.coords.clone() | |
new_coords[:, 1:] *= 2 | |
new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(new_coords.dtype) | |
new_feats = input.feats.unsqueeze(1).expand(input.feats.shape[0], factor, *input.feats.shape[1:]) | |
out = SparseTensor(new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape) | |
out._scale = input._scale * 2 | |
out._spatial_cache = input._spatial_cache | |
return out | |