JoPmt's picture
Rename chat_with_bot (2).py to chat_with_bot.py
7975be3 verified
# Provides terminal-based chat interface for RWKV model.
# Usage: python chat_with_bot.py C:\rwkv.cpp-169M.bin
# Prompts and code adapted from https://github.com/BlinkDL/ChatRWKV/blob/9ca4cdba90efaee25cfec21a0bae72cbd48d8acd/chat.py
import os
import argparse
import pathlib
import copy
import json
import time
import sampling
from rwkv_cpp import rwkv_cpp_shared_library, rwkv_cpp_model
from tokenizer_util import add_tokenizer_argument, get_tokenizer
from typing import List, Dict, Optional
# ======================================== Script settings ========================================
# English, Chinese, Japanese
LANGUAGE: str = 'English'
# QA: Question and Answer prompt to talk to an AI assistant.
# Chat: chat prompt (need a large model for adequate quality, 7B+).
PROMPT_TYPE: str = 'QA'
MAX_GENERATION_LENGTH: int = 250
# Sampling temperature. It could be a good idea to increase temperature when top_p is low.
TEMPERATURE: float = 0.8
# For better Q&A accuracy and less diversity, reduce top_p (to 0.5, 0.2, 0.1 etc.)
TOP_P: float = 0.5
# Penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
PRESENCE_PENALTY: float = 0.2
# Penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
FREQUENCY_PENALTY: float = 0.2
END_OF_LINE_TOKEN: int = 187
DOUBLE_END_OF_LINE_TOKEN: int = 535
END_OF_TEXT_TOKEN: int = 0
# =================================================================================================
parser = argparse.ArgumentParser(description='Provide terminal-based chat interface for RWKV model')
parser.add_argument('model_path', help='Path to RWKV model in ggml format')
add_tokenizer_argument(parser)
args = parser.parse_args()
script_dir: pathlib.Path = pathlib.Path(os.path.abspath(__file__)).parent
with open(script_dir / 'prompt' / f'{LANGUAGE}-{PROMPT_TYPE}.json', 'r', encoding='utf8') as json_file:
prompt_data = json.load(json_file)
user, bot, separator, init_prompt = prompt_data['user'], prompt_data['bot'], prompt_data['separator'], prompt_data['prompt']
if init_prompt == '':
raise ValueError('Prompt must not be empty')
library = rwkv_cpp_shared_library.load_rwkv_shared_library()
print(f'System info: {library.rwkv_get_system_info_string()}')
print('Loading RWKV model')
model = rwkv_cpp_model.RWKVModel(library, args.model_path)
tokenizer_decode, tokenizer_encode = get_tokenizer(args.tokenizer, model.n_vocab)
# =================================================================================================
processed_tokens: List[int] = []
logits: Optional[rwkv_cpp_model.NumpyArrayOrPyTorchTensor] = None
state: Optional[rwkv_cpp_model.NumpyArrayOrPyTorchTensor] = None
def process_tokens(_tokens: List[int], new_line_logit_bias: float = 0.0) -> None:
global processed_tokens, logits, state
logits, state = model.eval_sequence_in_chunks(_tokens, state, state, logits, use_numpy=True)
processed_tokens += _tokens
logits[END_OF_LINE_TOKEN] += new_line_logit_bias
state_by_thread: Dict[str, Dict] = {}
def save_thread_state(_thread: str) -> None:
state_by_thread[_thread] = {
'tokens': copy.deepcopy(processed_tokens),
'logits': copy.deepcopy(logits),
'state': copy.deepcopy(state)
}
def load_thread_state(_thread: str) -> None:
global processed_tokens, logits, state
thread_state = state_by_thread[_thread]
processed_tokens = copy.deepcopy(thread_state['tokens'])
logits = copy.deepcopy(thread_state['logits'])
state = copy.deepcopy(thread_state['state'])
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end.
# See https://github.com/BlinkDL/ChatRWKV/pull/110/files
def split_last_end_of_line(tokens: List[int]) -> List[int]:
if len(tokens) > 0 and tokens[-1] == DOUBLE_END_OF_LINE_TOKEN:
tokens = tokens[:-1] + [END_OF_LINE_TOKEN, END_OF_LINE_TOKEN]
return tokens
# =================================================================================================
processing_start: float = time.time()
prompt_tokens = tokenizer_encode(init_prompt)
prompt_token_count = len(prompt_tokens)
print(f'Processing {prompt_token_count} prompt tokens, may take a while')
process_tokens(split_last_end_of_line(prompt_tokens))
processing_duration: float = time.time() - processing_start
print(f'Processed in {int(processing_duration)} s, {int(processing_duration / prompt_token_count * 1000)} ms per token')
save_thread_state('chat_init')
save_thread_state('chat')
print(f'\nChat initialized! Your name is {user}. Write something and press Enter. Use \\n to add line breaks to your message.')
while True:
# Read user input
user_input: str = input(f'> {user}{separator} ')
msg: str = user_input.replace('\\n', '\n').strip()
temperature: float = TEMPERATURE
top_p: float = TOP_P
if '-temp=' in msg:
temperature = float(msg.split('-temp=')[1].split(' ')[0])
msg = msg.replace('-temp='+f'{temperature:g}', '')
if temperature <= 0.2:
temperature = 0.2
if temperature >= 5:
temperature = 5
if '-top_p=' in msg:
top_p = float(msg.split('-top_p=')[1].split(' ')[0])
msg = msg.replace('-top_p='+f'{top_p:g}', '')
if top_p <= 0:
top_p = 0
msg = msg.strip()
# + reset --> reset chat
if msg == '+reset':
load_thread_state('chat_init')
save_thread_state('chat')
print(f'{bot}{separator} Chat reset.\n')
continue
elif msg[:5].lower() == '+gen ' or msg[:3].lower() == '+i ' or msg[:4].lower() == '+qa ' or msg[:4].lower() == '+qq ' or msg.lower() == '+++' or msg.lower() == '++':
# +gen YOUR PROMPT --> free single-round generation with any prompt. Requires Novel model.
if msg[:5].lower() == '+gen ':
new = '\n' + msg[5:].strip()
state = None
processed_tokens = []
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +i YOUR INSTRUCT --> free single-round generation with any instruct. Requires Raven model.
elif msg[:3].lower() == '+i ':
new = f'''
Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{msg[3:].strip()}
# Response:
'''
state = None
processed_tokens = []
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +qq YOUR QUESTION --> answer an independent question with more creativity (regardless of context).
elif msg[:4].lower() == '+qq ':
new = '\nQ: ' + msg[4:].strip() + '\nA:'
state = None
processed_tokens = []
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +qa YOUR QUESTION --> answer an independent question (regardless of context).
elif msg[:4].lower() == '+qa ':
load_thread_state('chat_init')
real_msg = msg[4:].strip()
new = f'{user}{separator} {real_msg}\n\n{bot}{separator}'
process_tokens(tokenizer_encode(new))
save_thread_state('gen_0')
# +++ --> continue last free generation (only for +gen / +i)
elif msg.lower() == '+++':
try:
load_thread_state('gen_1')
save_thread_state('gen_0')
except Exception as e:
print(e)
continue
# ++ --> retry last free generation (only for +gen / +i)
elif msg.lower() == '++':
try:
load_thread_state('gen_0')
except Exception as e:
print(e)
continue
thread = 'gen_1'
else:
# + --> alternate chat reply
if msg.lower() == '+':
try:
load_thread_state('chat_pre')
except Exception as e:
print(e)
continue
# chat with bot
else:
load_thread_state('chat')
new = f'{user}{separator} {msg}\n\n{bot}{separator}'
process_tokens(tokenizer_encode(new), new_line_logit_bias=-999999999)
save_thread_state('chat_pre')
thread = 'chat'
# Print bot response
print(f'> {bot}{separator}', end='')
start_index: int = len(processed_tokens)
accumulated_tokens: List[int] = []
token_counts: Dict[int, int] = {}
for i in range(MAX_GENERATION_LENGTH):
for n in token_counts:
logits[n] -= PRESENCE_PENALTY + token_counts[n] * FREQUENCY_PENALTY
token: int = sampling.sample_logits(logits, temperature, top_p)
if token == END_OF_TEXT_TOKEN:
print()
break
if token not in token_counts:
token_counts[token] = 1
else:
token_counts[token] += 1
process_tokens([token])
# Avoid UTF-8 display issues
accumulated_tokens += [token]
decoded: str = tokenizer_decode(accumulated_tokens)
if '\uFFFD' not in decoded:
print(decoded, end='', flush=True)
accumulated_tokens = []
if thread == 'chat':
if '\n\n' in tokenizer_decode(processed_tokens[start_index:]):
break
if i == MAX_GENERATION_LENGTH - 1:
print()
save_thread_state(thread)