File size: 30,857 Bytes
76dc483
 
 
 
 
0dae5e8
30e951c
edce178
0dae5e8
d6b9053
 
76dc483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917b55
 
 
76dc483
 
 
4917b55
eaf3496
76dc483
 
 
 
 
 
 
 
 
 
ad4f1bb
e9a2b09
 
 
 
 
 
 
0dae5e8
76dc483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917b55
76dc483
 
 
 
14fe195
d6b9053
 
76dc483
 
 
dfc06f2
 
 
 
 
 
 
 
 
76dc483
 
 
dfc06f2
 
76dc483
dfc06f2
76dc483
 
 
 
dfc06f2
 
76dc483
dfc06f2
76dc483
 
 
 
dfc06f2
 
76dc483
dfc06f2
76dc483
 
 
 
dfc06f2
 
76dc483
dfc06f2
76dc483
 
 
 
dfc06f2
 
76dc483
dfc06f2
76dc483
 
 
f108655
14fe195
4917b55
 
76dc483
 
4917b55
 
 
76dc483
 
b2ee1a5
4917b55
7abc274
4917b55
d6b9053
76dc483
 
 
 
 
 
 
 
0126645
76dc483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e07dfeb
76dc483
 
 
 
 
 
 
 
30e951c
76dc483
 
 
 
 
 
 
 
 
 
 
 
30e951c
76dc483
 
 
 
 
 
bf8874b
aae8857
76dc483
 
 
 
 
eaf3496
76dc483
 
 
 
 
 
 
 
30e951c
76dc483
 
 
 
 
 
 
0dae5e8
 
76dc483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917b55
76dc483
4917b55
 
76dc483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917b55
76dc483
30e951c
76dc483
 
 
 
 
 
 
eaf3496
76dc483
 
30e951c
76dc483
 
eaf3496
76dc483
eaf3496
76dc483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4917b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76dc483
 
 
 
0dae5e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import spaces
import gradio as gr
import numpy as np

# DiffuseCraft
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers, save_image_history,
    get_vaes, enable_diffusers_model_detail, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
    preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
    download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json,
    get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
    SCHEDULE_TYPE_OPTIONS, SCHEDULE_PREDICTION_TYPE_OPTIONS)
# Translator
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
    get_llm_formats, get_dolphin_model_format, get_dolphin_models,
    get_dolphin_model_info, select_dolphin_model, select_dolphin_format, get_dolphin_sysprompt)
# Tagger
from tagger.v2 import v2_upsampling_prompt, V2_ALL_MODELS
from tagger.utils import (gradio_copy_text, gradio_copy_prompt, COPY_ACTION_JS,
    V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
    remove_specific_prompt, insert_recom_prompt, compose_prompt_to_copy,
    translate_prompt, select_random_character)
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
def description_ui():
    gr.Markdown(
        """

## Danbooru Tags Transformer V2 Demo with WD Tagger & SD3 Long Captioner

(Image =>) Prompt => Upsampled longer prompt

- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).

- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft), [dart-v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)\

, gokaygokay's [Florence-2-SD3-Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner)

"""
    )


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

css = """

#container { margin: 0 auto; !important; }

#col-container { margin: 0 auto; !important; }

#result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; }

.lora { min-width: 480px; !important; }

.title { font-size: 3em; align-items: center; text-align: center; }

.info { align-items: center; text-align: center; }

.desc [src$='#float'] { float: right; margin: 20px; }

"""

with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo:
    gr.Markdown("# Votepurchase Multiple Model", elem_classes="title")
    state = gr.State(value={})
    with gr.Tab("Image Generator"):
        with gr.Column(elem_id="col-container"):
            with gr.Row():
                prompt = gr.Text(label="Prompt", show_label=False, lines=1, max_lines=8, placeholder="Enter your prompt", container=False)
            
            with gr.Row():
                run_button = gr.Button("Run", variant="primary", scale=5)
                run_translate_button = gr.Button("Run with LLM Enhance", variant="secondary", scale=3)
                auto_trans = gr.Checkbox(label="Auto translate to English", value=False, scale=2)

            result = gr.Image(label="Result", elem_id="result", format="png", type="filepath", show_label=False, interactive=False,
                            show_download_button=True, show_share_button=False, container=True)
            with gr.Accordion("History", open=False):
                history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", format="png", interactive=False, show_share_button=False,
                show_download_button=True)
                history_files = gr.Files(interactive=False, visible=False)
                history_clear_button = gr.Button(value="Clear History", variant="secondary")
                history_clear_button.click(lambda: ([], []), None, [history_gallery, history_files], queue=False, show_api=False)

            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    negative_prompt = gr.Text(label="Negative prompt", lines=1, max_lines=6, placeholder="Enter a negative prompt",
                                              value="(low quality, worst quality:1.2), very displeasing, watermark, signature, ugly")

                with gr.Row():
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
                    height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
                    guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
                    num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)

                with gr.Row():
                    with gr.Column(scale=4):
                        model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
                                                choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
                                                allow_custom_value=True, interactive=True, min_width=320)
                        model_info = gr.Markdown(elem_classes="info")
                    with gr.Column(scale=1):
                        model_detail = gr.Checkbox(label="Show detail of model in list", value=False)

                with gr.Row():
                    sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler")
                    schedule_type = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0])
                    schedule_prediction_type = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0])
                    vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0])

                with gr.Accordion("LoRA", open=True, visible=True):
                    def lora_dropdown(label):
                        return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)

                    def lora_scale_slider(label):
                        return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label)
                    
                    def lora_textbox():
                        return gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
                    
                    with gr.Row():
                        with gr.Column():
                            with gr.Row():
                                lora1 = lora_dropdown("LoRA 1")
                                lora1_wt = lora_scale_slider("LoRA 1: weight")
                            with gr.Row():
                                lora1_info = lora_textbox()
                                lora1_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora1_md = gr.Markdown(value="", visible=False)
                        with gr.Column():
                            with gr.Row():
                                lora2 = lora_dropdown("LoRA 2")
                                lora2_wt = lora_scale_slider("LoRA 2: weight")
                            with gr.Row():
                                lora2_info = lora_textbox()
                                lora2_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora2_md = gr.Markdown(value="", visible=False)
                        with gr.Column():
                            with gr.Row():
                                lora3 = lora_dropdown("LoRA 3")
                                lora3_wt = lora_scale_slider("LoRA 3: weight")
                            with gr.Row():
                                lora3_info = lora_textbox()
                                lora3_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora3_md = gr.Markdown(value="", visible=False)
                        with gr.Column():
                            with gr.Row():
                                lora4 = lora_dropdown("LoRA 4")
                                lora4_wt = lora_scale_slider("LoRA 4: weight")
                            with gr.Row():
                                lora4_info = lora_textbox()
                                lora4_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora4_md = gr.Markdown(value="", visible=False)
                        with gr.Column():
                            with gr.Row():
                                lora5 = lora_dropdown("LoRA 5")
                                lora5_wt = lora_scale_slider("LoRA 5: weight")
                            with gr.Row():
                                lora5_info = lora_textbox()
                                lora5_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora5_md = gr.Markdown(value="", visible=False)
                    with gr.Accordion("From URL", open=True, visible=True):
                        with gr.Row():
                            lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "Illustrious", "SDXL 1.0"])
                            lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated")
                            lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime")
                        with gr.Row():
                            lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
                            lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True)
                            lora_search_civitai_user = gr.Textbox(label="Username", lines=1)
                        lora_search_civitai_submit = gr.Button("Search on Civitai")
                        with gr.Row():
                            lora_search_civitai_json = gr.JSON(value={}, visible=False)
                            lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc")
                        with gr.Accordion("Select from Gallery", open=False):
                            lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
                        lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
                        lora_download_url = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1)
                        lora_download = gr.Button("Get and set LoRA and apply to prompt")

                with gr.Row():
                    quality_selector = gr.Radio(label="Quality Tag Presets", interactive=True, choices=list(preset_quality.keys()), value="None", scale=3)
                    style_selector = gr.Radio(label="Style Presets", interactive=True, choices=list(preset_styles.keys()), value="None", scale=3)
                    recom_prompt = gr.Checkbox(label="Recommended prompt", value=True, scale=1)
                
                with gr.Accordion("Translation Settings", open=False):
                    chatbot = gr.Chatbot(render_markdown=False, visible=False) # component for auto-translation
                    chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model")
                    chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info")
                    chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format")
                    with gr.Row():
                        chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
                        chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
                        chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
                        chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
                        chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
                    chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")

        examples = gr.Examples(
            examples = [
                ["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
                ["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
                ["kafuu chino, 1girl, solo"],
                ["1girl"],
                ["beautiful sunset"],
            ],
            inputs=[prompt],
            cache_examples=False,
        )

    gr.on( #lambda x: None, inputs=None, outputs=result).then(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
                guidance_scale, num_inference_steps, model_name,
                lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
                sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
        outputs=[result],
        queue=True,
        show_progress="full",
        show_api=True,
    )

    gr.on( #lambda x: None, inputs=None, outputs=result).then(
        triggers=[run_translate_button.click],
        fn=_infer, # dummy fn for api
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
                guidance_scale, num_inference_steps, model_name,
                lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
                sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
        outputs=[result],
        queue=False,
        show_api=True,
        api_name="infer_translate",
    ).success(
        fn=dolphin_respond_auto,
        inputs=[prompt, chatbot, chat_model, chat_sysmsg, chat_tokens, chat_temperature, chat_topp, chat_topk, chat_rp, state],
        outputs=[chatbot, result, prompt],
        queue=True,
        show_progress="full",
        show_api=False,
    ).success(
        fn=dolphin_parse_simple,
        inputs=[prompt, chatbot, state],
        outputs=[prompt],
        queue=False,
        show_api=False,
    ).success(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
                guidance_scale, num_inference_steps, model_name,
                lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
                sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type, recom_prompt],
        outputs=[result],
        queue=True,
        show_progress="full",
        show_api=False,
    ).success(lambda: None, None, chatbot, queue=False, show_api=False)\
    .success(pass_result, [result], [result], queue=False, show_api=False) # dummy fn for api

    result.change(save_image_history, [result, history_gallery, history_files, model_name], [history_gallery, history_files], queue=False, show_api=False)

    gr.on(
        triggers=[lora1.change, lora1_wt.change, lora2.change, lora2_wt.change, lora3.change, lora3_wt.change,
                   lora4.change, lora4_wt.change, lora5.change, lora5_wt.change],
        fn=update_loras,
        inputs=[prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt],
        outputs=[prompt, lora1, lora1_wt, lora1_info, lora1_copy, lora1_md,
                 lora2, lora2_wt, lora2_info, lora2_copy, lora2_md, lora3, lora3_wt, lora3_info, lora3_copy, lora3_md, 
                 lora4, lora4_wt, lora4_info, lora4_copy, lora4_md, lora5, lora5_wt, lora5_info, lora5_copy, lora5_md],
        queue=False,
        trigger_mode="once",
        show_api=False,
    )
    lora1_copy.click(apply_lora_prompt, [prompt, lora1_info], [prompt], queue=False, show_api=False)
    lora2_copy.click(apply_lora_prompt, [prompt, lora2_info], [prompt], queue=False, show_api=False)
    lora3_copy.click(apply_lora_prompt, [prompt, lora3_info], [prompt], queue=False, show_api=False)
    lora4_copy.click(apply_lora_prompt, [prompt, lora4_info], [prompt], queue=False, show_api=False)
    lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)

    gr.on(
        triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
        fn=search_civitai_lora,
        inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery],
        outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery],
        scroll_to_output=True,
        queue=True,
        show_api=False,
    )
    lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True)  # fn for api
    lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
    gr.on(
        triggers=[lora_download.click, lora_download_url.submit],
        fn=download_my_lora,
        inputs=[lora_download_url,lora1, lora2, lora3, lora4, lora5],
        outputs=[lora1, lora2, lora3, lora4, lora5],
        scroll_to_output=True,
        queue=True,
        show_api=False,
    )
    lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)

    #recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
    gr.on(
        triggers=[quality_selector.change, style_selector.change],
        fn=process_style_prompt,
        inputs=[prompt, negative_prompt, style_selector, quality_selector],
        outputs=[prompt, negative_prompt],
        queue=False,
        trigger_mode="once",
        show_api=False,
    )

    model_detail.change(enable_diffusers_model_detail, [model_detail, model_name, state], [model_detail, model_name, state], queue=False, show_api=False)
    model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)

    chat_model.change(select_dolphin_model, [chat_model, state], [chat_model, chat_format, chat_model_info, state], queue=True, show_progress="full", show_api=False)\
    .success(lambda: None, None, chatbot, queue=False, show_api=False)
    chat_format.change(select_dolphin_format, [chat_format, state], [chat_format, state], queue=False, show_api=False)\
    .success(lambda: None, None, chatbot, queue=False, show_api=False)

    # Tagger
    with gr.Tab("Tags Transformer with Tagger"):
        with gr.Column():
                with gr.Group():
                    input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
                    with gr.Accordion(label="Advanced options", open=False):
                        general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
                        character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                        input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
                        recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
                    image_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
                    keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
                    generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary")
                with gr.Group():
                    with gr.Row():
                        input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku")
                        input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid")
                        random_character = gr.Button(value="Random character 🎲", size="sm")
                    input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="")
                    input_tags_to_copy = gr.Textbox(value="", visible=False)
                    with gr.Row():
                        copy_input_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
                        copy_prompt_btn_input = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
                    translate_input_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
                    tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False)
                    input_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="explicit")
                    with gr.Accordion(label="Advanced options", open=False):
                        input_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square")
                        input_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="very_long")
                        input_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")                    
                        input_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
                        model_name = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
                        dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False)
                        recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False)
                        recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False)
                    generate_btn = gr.Button(value="GENERATE TAGS", size="lg", variant="primary")
                with gr.Row():
                    with gr.Group():
                        output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
                        with gr.Row():
                            copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
                            copy_prompt_btn = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
                    with gr.Group():
                        output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True)
                        with gr.Row():
                            copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
                            copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)

        random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character], queue=False, show_api=False)

        translate_input_prompt_button.click(translate_prompt, [input_general], [input_general], queue=False, show_api=False)
        translate_input_prompt_button.click(translate_prompt, [input_character], [input_character], queue=False, show_api=False)
        translate_input_prompt_button.click(translate_prompt, [input_copyright], [input_copyright], queue=False, show_api=False)

        generate_from_image_btn.click(
            lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False, show_api=False,
        ).success(
            predict_tags_wd,
            [input_image, input_general, image_algorithms, general_threshold, character_threshold],
            [input_copyright, input_character, input_general, copy_input_btn],
            show_api=False,
        ).success(
            predict_tags_fl2_sd3, [input_image, input_general, image_algorithms], [input_general], show_api=False,
        ).success(
            remove_specific_prompt, [input_general, keep_tags], [input_general], queue=False, show_api=False,
        ).success(
            convert_danbooru_to_e621_prompt, [input_general, input_tag_type], [input_general], queue=False, show_api=False,
        ).success(
            insert_recom_prompt, [input_general, dummy_np, recom_prompt], [input_general, dummy_np], queue=False, show_api=False,
        ).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False, show_api=False)
        copy_input_btn.click(compose_prompt_to_copy, [input_character, input_copyright, input_general], [input_tags_to_copy], show_api=False)\
            .success(gradio_copy_text, [input_tags_to_copy], js=COPY_ACTION_JS, show_api=False)
        copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy], show_api=False)\
            .success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt], show_api=False)
        
        generate_btn.click(
            v2_upsampling_prompt,
            [model_name, input_copyright, input_character, input_general,
            input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags],
            [output_text],
            show_api=False,
        ).success(
            convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False, show_api=False,
        ).success(
            insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False, show_api=False,
        ).success(
            insert_recom_prompt, [output_text_pony, dummy_np, recom_pony], [output_text_pony, dummy_np], queue=False, show_api=False,
        ).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
                   None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False, show_api=False)
        copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS, show_api=False)
        copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS, show_api=False)
        copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt], show_api=False)
        copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt], show_api=False)

    with gr.Tab("PNG Info"):
        with gr.Row():
            with gr.Column():
                image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])

            with gr.Column():
                result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)

                image_metadata.change(
                    fn=extract_exif_data,
                    inputs=[image_metadata],
                    outputs=[result_metadata],
                )

    with gr.Tab("Upscaler"):
        with gr.Row():
            with gr.Column():
                image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
                upscaler_tab = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS[9:], value=UPSCALER_KEYS[11])
                upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
                generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")

            with gr.Column():
                result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")

                generate_button_up_tab.click(
                    fn=esrgan_upscale,
                    inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
                    outputs=[result_up_tab],
                )

    gr.LoginButton()
    gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")

demo.queue()
demo.launch(show_error=True, debug=True)