JuanLozada97's picture
Upload app.py
a413c26
raw
history blame
5.9 kB
import gradio as gr
import os
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from typing import Tuple, Dict
from timeit import default_timer as timer
from skimage import io, transform
import os
import base64
import json
import torch.nn.functional as F
from model import create_sam_model
# 1.Setup variables
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = "sam_vit_b_01ec64.pth"
model_type = "vit_b"
# 2.Model preparation and load save weights
medsam_model = create_sam_model(model_type,checkpoint,device)
# 3.Predict fn
def show_mask(mask, ax):
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
@torch.no_grad()
def medsam_inference(medsam_model, img_embed, box_1024, H, W):
box_torch = torch.as_tensor(box_1024, dtype=torch.float, device=img_embed.device)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :] # (B, 1, 4)
sparse_embeddings, dense_embeddings = medsam_model.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_logits, _ = medsam_model.mask_decoder(
image_embeddings=img_embed, # (B, 256, 64, 64)
image_pe=medsam_model.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=False,
)
low_res_pred = torch.sigmoid(low_res_logits) # (1, 1, 256, 256)
low_res_pred = F.interpolate(
low_res_pred,
size=(H, W),
mode="bilinear",
align_corners=False,
) # (1, 1, gt.shape)
low_res_pred = low_res_pred.squeeze().cpu().numpy() # (256, 256)
medsam_seg = (low_res_pred > 0.5).astype(np.uint8)
return medsam_seg
def predict(img) -> Tuple[Dict, float]:
"""Transforms and performs a prediction on img and returns prediction and time taken.
"""
# Start the timer
start_time = timer()
# Transform the target image and add a batch dimension
img_np = np.array(img)
# Convierte de BGR a RGB si es necesario
if img_np.shape[-1] == 3: # Asegura que sea una imagen en color
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)
if len(img_np.shape) == 2:
img_3c = np.repeat(img_np[:, :, None], 3, axis=-1)
else:
img_3c = img_np
H, W, _ = img_3c.shape
# %% image preprocessing
img_1024 = transform.resize(
img_3c, (1024, 1024), order=3, preserve_range=True, anti_aliasing=True
).astype(np.uint8)
img_1024 = (img_1024 - img_1024.min()) / np.clip(
img_1024.max() - img_1024.min(), a_min=1e-8, a_max=None
) # normalize to [0, 1], (H, W, 3)
# convert the shape to (3, H, W)
img_1024_tensor = (
torch.tensor(img_1024).float().permute(2, 0, 1).unsqueeze(0).to(device)
)
# Put model into evaluation mode and turn on inference mode
medsam_model.eval()
with torch.inference_mode():
image_embedding = medsam_model.image_encoder(img_1024_tensor) # (1, 256, 64, 64)
# define the inputbox
input_box = np.array([[125, 275, 190, 350]])
# transfer box_np t0 1024x1024 scale
box_1024 = input_box / np.array([W, H, W, H]) * 1024
medsam_seg = medsam_inference(medsam_model, image_embedding, box_1024, H, W)
pred_time = round(timer() - start_time, 5)
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(img_3c)
show_box(input_box[0], ax[0])
ax[0].set_title("Input Image and Bounding Box")
ax[1].imshow(img_3c)
show_mask(medsam_seg, ax[1])
show_box(input_box[0], ax[1])
ax[1].set_title("MedSAM Segmentation")
# Calculate the prediction time
image_embedding = image_embedding.cpu().numpy().tobytes()
# Serialize the response data to JSON format
serialized_data = json.dumps([base64.b64encode(image_embedding).decode('ascii')])
# Return the prediction dictionary and prediction time
return fig, pred_time,serialized_data
# 4. Gradio app
# Create title, description and article strings
title = "MedSam"
description = "a specialized SAM model finely tuned for the segmentation of medical images. With this app, effortlessly extract image embeddings using the model's advanced mask decoder."
article = "Created at gradio-sam-predictor-image-embedding-generator.ipynb ."
# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type="pil"), # what are the inputs?
outputs=[gr.Plot(label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time (s)"),
gr.JSON(label="Embedding Image")], # our fn has two outputs, therefore we have two outputs
examples=example_list,
title=title,
description=description,
article=article)
# Launch the demo!
demo.launch(debug=False, # print errors locally?
share=True) # generate a publically shareable URL?