File size: 4,903 Bytes
7ebfeb9 afda258 cf05f8b 22ed06b 623b4fb 931c795 e82dfb2 7fcb6d2 623b4fb eba7622 afda258 8875dbc f385ddd 7ebfeb9 8875dbc f385ddd afda258 dee2758 f385ddd fc6f52f f385ddd 8ba8a00 4c7d9fb 7ebfeb9 97fceae a4593c9 8ba8a00 97fceae 9cda1d3 97fceae eba7622 8ba8a00 dd7ff01 97fceae 8ba8a00 97fceae 8ba8a00 97fceae 8ba8a00 f385ddd 8ba8a00 97fceae 5cebe28 97fceae 8ba8a00 af973ef 8ba8a00 97fceae 0a2f651 c9254be ae697d5 97fceae 8ba8a00 cc88e44 8ba8a00 a4593c9 97fceae cc88e44 97fceae 8875dbc 623b4fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
from PIL import Image
import clipGPT
import vitGPT
import skimage.io as io
import PIL.Image
import difflib
import ViTCoAtt
import cnnrnn
from build_vocab import Vocabulary
# Caption generation functions
def generate_caption_clipgpt(image, max_tokens, temperature):
caption = clipGPT.generate_caption_clipgpt(image, max_tokens, temperature)
return caption
def generate_caption_vitgpt(image, max_tokens, temperature):
caption = vitGPT.generate_caption(image, max_tokens, temperature)
return caption
def generate_caption_vitCoAtt(image):
caption = ViTCoAtt.CaptionSampler.main(image)
return caption
def generate_caption_cnnrnn(image):
with open('/content/Image_features_ecoder_decoder.pickle', 'rb') as f:
Xnet_features = pickle.load(f)
image = Xnet_features[image]
caption = cnnrnn.get_result(image)
return caption
with gr.Row():
image = gr.Image(label="Upload Chest X-ray", type="pil")
with gr.Row():
with gr.Column(): # Column for dropdowns and model choice
max_tokens = gr.Dropdown(list(range(50, 101)), label="Max Tokens", value=75)
temperature = gr.Slider(0.5, 0.9, step=0.1, label="Temperature", value=0.7)
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention", "Baseline Model CNN-RNN"], label="Select Model")
generate_button = gr.Button("Generate Caption")
real_captions = {"0" : "No acute cardiopulmonary abnormality. Low lung volumes. Heart size and mediastinal contour within normal limits. No focal air space consolidation, pneumothorax, or pleural effusion. Mild thoracic spine degenerative change.",
"1":"Left basilar atelectasis and/or infiltrate, with no radiographic evidence of tuberculosis. Heart size upper limits of normal. Small amount of left basilar airspace disease. The right lung is clear. There are no cavitary lesions seen. No pneumothorax. No pleural effusions",
"2":"Cardiomegaly and small bilateral pleural effusions. Abnormal pulmonary opacities most suggestive of pulmonary edema, primary differential diagnosis includes infection and aspiration, clinical correlation recommended Moderate-to-marked enlargement of the cardiac silhouette, mediastinal contours appear similar to prior. Mild bilateral posterior sulcus blunting, interstitial and alveolar opacities greatest in the central lungs and bases with indistinct vascular margination.",
"3":"Severe cardiomegaly. Limited mediastinal evaluation given body habitus and lordotic projection. Recommend XXXX for further evaluation of mediastinum given T/Spine injury noted on C/Spine imaging. Critical result notification documented through Primordial. Lordotic projection and large body habitus. Limited mediastinal evaluation. Severe cardiomegaly. No visualized pneumothorax. No large effusion or airspace disease. No fracture."}
imgIDs = {"0":"/content/drive/MyDrive/cnn-rnn/NLMCXR_png/CXR192_IM-0598_0",
"1":"/content/drive/MyDrive/cnn-rnn/NLMCXR_png/CXR194_IM-0609_0",
"2":"/content/drive/MyDrive/cnn-rnn/NLMCXR_png/CXR2637_IM-1122_0",
"3":"/content/drive/MyDrive/cnn-rnn/NLMCXR_png/CXR1111_IM-0077_0"}
caption = gr.Textbox(label="Generated Caption")
real_caption = gr.Textbox(label="Actual Caption")
def predict(img, model_name, max_tokens, temperature, examples):
if model_name == "CLIP-GPT2":
return generate_caption_clipgpt(img, max_tokens, temperature), getCaption(examples)
elif model_name == "ViT-GPT2":
return generate_caption_vitgpt(img, max_tokens, temperature), getCaption(examples)
elif model_name == "ViT-CoAttention":
return generate_caption_vitCoAtt(img), getCaption(examples)
elif model_name == "Baseline Model CNN-RNN":
img = getImageID(examples)
return generate_caption_cnnrnn(img), getCaption(examples)
else:
return "Caption generation for this model is not yet implemented."
def getCaption(examples):
print(real_captions[examples[1]])
return real_captions[examples[1]]
def getImageID(examples):
print(imgIDs[examples[1]])
return imgIDs[examples[1]]
examples = [[f"example{i}.jpg"] for i in range(1,7)]
description= "You can generate captions by uploading an X-Ray and selecting a model of your choice below. Please select the number of Max Tokens and Temperature setting, if you are testing CLIP GPT2 and VIT GPT2 Models"
title = "MedViT: A Vision Transformer-Driven Method for Generating Medical Reports 🏥🤖"
interface = gr.Interface(
fn=predict,
inputs = [image, model_choice, max_tokens, temperature, examples],
theme="sudeepshouche/minimalist",
outputs=[caption,real_caption],
examples = examples,
title = title,
description = description
)
interface.launch(debug=True)
|