File size: 9,019 Bytes
55d9e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
import random
import uuid

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import load_dynamic_module

DESCRIPTION = """
# ImagesXL
"""

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may work on CPU.</p>"

USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0

MODEL_CHOICES = {
    "Fluently-XL-v2": "fluently/Fluently-XL-v2",
    "Stable Diffusion v1-5": "runwayml/stable-diffusion-v1-5",
    "Stable Diffusion v2-1": "stabilityai/stable-diffusion-2-1",
}

SCHEDULER_CHOICES = {
    "Euler Ancestral Discrete": EulerAncestralDiscreteScheduler,
    "DDIM": DDIMScheduler,
    "LMS Discrete": LMSDiscreteScheduler,
    "PNDM": PNDMScheduler,
}

UPSCALER_CHOICES = {
    "None": None,
    "Real-ESRGAN": "stabilityai/real-esrgan",
    "Latent Diffusion": "stabilityai/latent-diffusion-upscaler",
}

def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 512,
    height: int = 512,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    scheduler: str = "Euler Ancestral Discrete",
    model_name: str = "Fluently-XL-v2",
    randomize_seed: bool = False,
    num_images_per_prompt: int = 1,
    use_lora: bool = False,
    lora_model_name: str = "",
    use_upscaler: bool = False,
    upscaler_model_name: str = "None",
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))

    if not use_negative_prompt:
        negative_prompt = ""  # type: ignore

    if torch.cuda.is_available():
        pipe = StableDiffusionPipeline.from_pretrained(
            MODEL_CHOICES[model_name],
            torch_dtype=torch.float16,
            use_safetensors=True,
        )
    else:
        pipe = StableDiffusionPipeline.from_pretrained(
            MODEL_CHOICES[model_name],
            torch_dtype=torch.float32,
            use_safetensors=True,
        )

    pipe.scheduler = SCHEDULER_CHOICES[scheduler].from_config(pipe.scheduler.config)

    if use_lora and lora_model_name:
        pipe = load_dynamic_module("diffusers.loaders", "Lora", "lora")(pipe, lora_model_name, device_map="auto")

    images = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images_per_prompt,
        output_type="pil",
    ).images

    if use_upscaler and upscaler_model_name:
        upscaler = StableDiffusionPipeline.from_pretrained(
            UPSCALER_CHOICES[upscaler_model_name],
            torch_dtype=torch.float16,
            use_safetensors=True,
        )
        images = [upscaler(image).images[0] for image in images]

    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed

examples = [
    "neon holography crystal cat",
    "a cat eating a piece of cheese",
    "an astronaut riding a horse in space",
    "a cartoon of a boy playing with a tiger",
    "a cute robot artist painting on an easel, concept art",
    "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
]

css = '''
.gradio-container{max-width: 800px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''
with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=False,
    )

    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=2,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
            negative_prompt = gr.Text(
                label="Negative prompt",
                lines=4,
                max_lines=6,
                value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
                placeholder="Enter a negative prompt",
                visible=True,
            )
        with gr.Row():
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
                visible=True
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=1024,
                step=8,
                value=512,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=1024,
                step=8,
                value=512,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20.0,
                step=0.1,
                value=6,
            )
            num_inference_steps = gr.Slider(
                label="Inference Steps",
                minimum=1,
                maximum=100,
                step=1,
                value=25,
            )
        with gr.Row():
            scheduler = gr.Dropdown(
                label="Scheduler",
                choices=list(SCHEDULER_CHOICES.keys()),
                value="Euler Ancestral Discrete",
            )
            model_name = gr.Dropdown(
                label="Model",
                choices=list(MODEL_CHOICES.keys()),
                value="Fluently-XL-v2",
            )
        with gr.Row():
            num_images_per_prompt = gr.Slider(
                label="Images per Prompt",
                minimum=1,
                maximum=8,
                step=1,
                value=1,
            )
        with gr.Row():
            use_lora = gr.Checkbox(label="Use LoRA Model", value=False)
            lora_model_name = gr.Text(
                label="LoRA Model Name",
                placeholder="Enter a LoRA model name (e.g., 'runwayml/stable-diffusion-v1-5-lora')",
                visible=False,
            )
        with gr.Row():
            use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
            upscaler_model_name = gr.Dropdown(
                label="Upscaler Model",
                choices=list(UPSCALER_CHOICES.keys()),
                value="None",
                visible=False,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=False,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    use_lora.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_lora,
        outputs=lora_model_name,
        api_name=False,
    )

    use_upscaler.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_upscaler,
        outputs=upscaler_model_name,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            scheduler,
            model_name,
            randomize_seed,
            num_images_per_prompt,
            use_lora,
            lora_model_name,
            use_upscaler,
            upscaler_model_name,
        ],
        outputs=[result, seed],
        api_name="run",
    )
    
if __name__ == "__main__":
    demo.queue(max_size=20).launch(show_api=False, debug=False)