File size: 9,019 Bytes
55d9e7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import load_dynamic_module
DESCRIPTION = """
# ImagesXL
"""
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may work on CPU.</p>"
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
MODEL_CHOICES = {
"Fluently-XL-v2": "fluently/Fluently-XL-v2",
"Stable Diffusion v1-5": "runwayml/stable-diffusion-v1-5",
"Stable Diffusion v2-1": "stabilityai/stable-diffusion-2-1",
}
SCHEDULER_CHOICES = {
"Euler Ancestral Discrete": EulerAncestralDiscreteScheduler,
"DDIM": DDIMScheduler,
"LMS Discrete": LMSDiscreteScheduler,
"PNDM": PNDMScheduler,
}
UPSCALER_CHOICES = {
"None": None,
"Real-ESRGAN": "stabilityai/real-esrgan",
"Latent Diffusion": "stabilityai/latent-diffusion-upscaler",
}
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 512,
height: int = 512,
guidance_scale: float = 3,
num_inference_steps: int = 25,
scheduler: str = "Euler Ancestral Discrete",
model_name: str = "Fluently-XL-v2",
randomize_seed: bool = False,
num_images_per_prompt: int = 1,
use_lora: bool = False,
lora_model_name: str = "",
use_upscaler: bool = False,
upscaler_model_name: str = "None",
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = "" # type: ignore
if torch.cuda.is_available():
pipe = StableDiffusionPipeline.from_pretrained(
MODEL_CHOICES[model_name],
torch_dtype=torch.float16,
use_safetensors=True,
)
else:
pipe = StableDiffusionPipeline.from_pretrained(
MODEL_CHOICES[model_name],
torch_dtype=torch.float32,
use_safetensors=True,
)
pipe.scheduler = SCHEDULER_CHOICES[scheduler].from_config(pipe.scheduler.config)
if use_lora and lora_model_name:
pipe = load_dynamic_module("diffusers.loaders", "Lora", "lora")(pipe, lora_model_name, device_map="auto")
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
output_type="pil",
).images
if use_upscaler and upscaler_model_name:
upscaler = StableDiffusionPipeline.from_pretrained(
UPSCALER_CHOICES[upscaler_model_name],
torch_dtype=torch.float16,
use_safetensors=True,
)
images = [upscaler(image).images[0] for image in images]
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
"neon holography crystal cat",
"a cat eating a piece of cheese",
"an astronaut riding a horse in space",
"a cartoon of a boy playing with a tiger",
"a cute robot artist painting on an easel, concept art",
"a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
]
css = '''
.gradio-container{max-width: 800px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=False,
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
lines=4,
max_lines=6,
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
placeholder="Enter a negative prompt",
visible=True,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=1024,
step=8,
value=512,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1024,
step=8,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=6,
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=100,
step=1,
value=25,
)
with gr.Row():
scheduler = gr.Dropdown(
label="Scheduler",
choices=list(SCHEDULER_CHOICES.keys()),
value="Euler Ancestral Discrete",
)
model_name = gr.Dropdown(
label="Model",
choices=list(MODEL_CHOICES.keys()),
value="Fluently-XL-v2",
)
with gr.Row():
num_images_per_prompt = gr.Slider(
label="Images per Prompt",
minimum=1,
maximum=8,
step=1,
value=1,
)
with gr.Row():
use_lora = gr.Checkbox(label="Use LoRA Model", value=False)
lora_model_name = gr.Text(
label="LoRA Model Name",
placeholder="Enter a LoRA model name (e.g., 'runwayml/stable-diffusion-v1-5-lora')",
visible=False,
)
with gr.Row():
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
upscaler_model_name = gr.Dropdown(
label="Upscaler Model",
choices=list(UPSCALER_CHOICES.keys()),
value="None",
visible=False,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
use_lora.change(
fn=lambda x: gr.update(visible=x),
inputs=use_lora,
outputs=lora_model_name,
api_name=False,
)
use_upscaler.change(
fn=lambda x: gr.update(visible=x),
inputs=use_upscaler,
outputs=upscaler_model_name,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
scheduler,
model_name,
randomize_seed,
num_images_per_prompt,
use_lora,
lora_model_name,
use_upscaler,
upscaler_model_name,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False) |