Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -39,37 +39,12 @@ from insightface.app import FaceAnalysis
|
|
39 |
from insightface.utils import face_align
|
40 |
|
41 |
|
42 |
-
# device = 'cuda:2' if torch.cuda.is_available() else 'cpu'
|
43 |
-
|
44 |
parser = argparse.ArgumentParser(description='IMAGDressing-v1')
|
45 |
-
# parser.add_argument('--if_resampler', type=bool, default=True)
|
46 |
parser.add_argument('--if_ipa', type=bool, default=True)
|
47 |
parser.add_argument('--if_control', type=bool, default=True)
|
48 |
|
49 |
-
# parser.add_argument('--pretrained_model_name_or_path',
|
50 |
-
# default="./ckpt/Realistic_Vision_V4.0_noVAE",
|
51 |
-
# type=str)
|
52 |
-
# parser.add_argument('--ip_ckpt',
|
53 |
-
# default="./ckpt/ip-adapter-faceid-plus_sd15.bin",
|
54 |
-
# type=str)
|
55 |
-
# parser.add_argument('--pretrained_image_encoder_path',
|
56 |
-
# default="./ckpt/image_encoder/",
|
57 |
-
# type=str)
|
58 |
-
# parser.add_argument('--pretrained_vae_model_path',
|
59 |
-
# default="./ckpt/sd-vae-ft-mse/",
|
60 |
-
# type=str)
|
61 |
-
# parser.add_argument('--model_ckpt',
|
62 |
-
# default="./ckpt/IMAGDressing-v1_512.pt",
|
63 |
-
# type=str)
|
64 |
-
# parser.add_argument('--output_path', type=str, default="./output_ipa_control_resampler")
|
65 |
-
# # parser.add_argument('--device', type=str, default="cuda:0")
|
66 |
args = parser.parse_args()
|
67 |
|
68 |
-
# svae path
|
69 |
-
# output_path = args.output_path
|
70 |
-
#
|
71 |
-
# if not os.path.exists(output_path):
|
72 |
-
# os.makedirs(output_path)
|
73 |
|
74 |
|
75 |
args.device = "cuda"
|
@@ -80,8 +55,6 @@ text_encoder = CLIPTextModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noV
|
|
80 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder").to(dtype=torch.float16, device=args.device)
|
81 |
unet = UNet2DConditionModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="unet").to(dtype=torch.float16,device=args.device)
|
82 |
|
83 |
-
image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
|
84 |
-
|
85 |
#face_model
|
86 |
app = FaceAnalysis(model_path="buffalo_l", providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
|
87 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
@@ -112,7 +85,7 @@ for name in unet.attn_processors.keys():
|
|
112 |
elif name.startswith("down_blocks"):
|
113 |
block_id = int(name[len("down_blocks.")])
|
114 |
hidden_size = unet.config.block_out_channels[block_id]
|
115 |
-
|
116 |
if cross_attention_dim is None:
|
117 |
attn_procs[name] = RefLoraSAttnProcessor2_0(name, hidden_size)
|
118 |
else:
|
@@ -161,18 +134,10 @@ noise_scheduler = DDIMScheduler(
|
|
161 |
set_alpha_to_one=False,
|
162 |
steps_offset=1,
|
163 |
)
|
164 |
-
# noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
|
165 |
|
166 |
control_net_openpose = ControlNetModel.from_pretrained(
|
167 |
"lllyasviel/control_v11p_sd15_openpose",
|
168 |
torch_dtype=torch.float16).to(device=args.device)
|
169 |
-
# pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
|
170 |
-
# text_encoder=text_encoder, image_encoder=image_encoder,
|
171 |
-
# ip_ckpt=args.ip_ckpt,
|
172 |
-
# ImgProj=image_proj, controlnet=control_net_openpose,
|
173 |
-
# scheduler=noise_scheduler,
|
174 |
-
# safety_checker=StableDiffusionSafetyChecker,
|
175 |
-
# feature_extractor=CLIPImageProcessor)
|
176 |
|
177 |
img_transform = transforms.Compose([
|
178 |
transforms.Resize([640, 512], interpolation=transforms.InterpolationMode.BILINEAR),
|
@@ -197,33 +162,27 @@ def resize_img(input_image, max_side=640, min_side=512, size=None,
|
|
197 |
@spaces.GPU
|
198 |
def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale,
|
199 |
face_guidance_scale,self_guidance_scale, cross_guidance_scale,if_ipa, if_post, if_control, denoise_steps, seed=42):
|
200 |
-
|
201 |
if prompt is None:
|
202 |
prompt = "a photography of a model"
|
203 |
prompt = prompt + ', best quality, high quality'
|
204 |
print(prompt, cloth_guidance_scale, if_ipa, if_control, denoise_steps, seed)
|
205 |
clip_image_processor = CLIPImageProcessor()
|
206 |
-
|
207 |
if not garm_img:
|
208 |
raise gr.Error("请上传衣服 / Please upload garment")
|
209 |
clothes_img = resize_img(garm_img)
|
210 |
vae_clothes = img_transform(clothes_img).unsqueeze(0)
|
211 |
-
# print(vae_clothes.shape)
|
212 |
ref_clip_image = clip_image_processor(images=clothes_img, return_tensors="pt").pixel_values
|
213 |
|
214 |
if if_ipa:
|
215 |
-
# image = cv2.imread(face_img)
|
216 |
faces = app.get(face_img)
|
217 |
-
|
218 |
if not faces:
|
219 |
raise gr.Error("人脸检测异常,尝试其他肖像 / Abnormal face detection. Try another portrait")
|
220 |
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
221 |
face_image = face_align.norm_crop(face_img, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
222 |
|
223 |
-
|
224 |
-
# face_img = Image.fromarray(face_image.astype('uint8'))
|
225 |
-
# face_img.save('face.png')
|
226 |
-
|
227 |
face_clip_image = clip_image_processor(images=face_image, return_tensors="pt").pixel_values
|
228 |
else:
|
229 |
faceid_embeds = None
|
@@ -235,9 +194,6 @@ def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, ca
|
|
235 |
pose_image = diffusers.utils.load_image(pose_img)
|
236 |
else:
|
237 |
pose_image = None
|
238 |
-
# print(if_ipa, if_control)
|
239 |
-
# pipe, generator = prepare_pipeline(args, if_ipa, if_control, unet, ref_unet, vae, tokenizer, text_encoder,
|
240 |
-
# image_encoder, image_proj, control_net_openpose)
|
241 |
|
242 |
noise_scheduler = DDIMScheduler(
|
243 |
num_train_timesteps=1000,
|
@@ -248,7 +204,7 @@ def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, ca
|
|
248 |
set_alpha_to_one=False,
|
249 |
steps_offset=1,
|
250 |
)
|
251 |
-
|
252 |
pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
|
253 |
text_encoder=text_encoder, image_encoder=image_encoder,
|
254 |
ip_ckpt='./ckpt/ip-adapter-faceid-plus_sd15.bin',
|
@@ -279,11 +235,12 @@ def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, ca
|
|
279 |
).images
|
280 |
|
281 |
if if_post and if_ipa:
|
282 |
-
|
|
|
283 |
output_array = np.array(output[0])
|
284 |
-
|
285 |
bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
|
286 |
-
|
287 |
bgr_image = Image.fromarray(bgr_array)
|
288 |
result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
|
289 |
return result[OutputKeys.OUTPUT_IMG]
|
@@ -349,11 +306,8 @@ with image_blocks as demo:
|
|
349 |
outputs=pose_img,
|
350 |
examples=pose_list_path)
|
351 |
|
352 |
-
|
353 |
-
# # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
354 |
-
# masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
|
355 |
with gr.Column():
|
356 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
357 |
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
|
358 |
# Add usage tips below the output image
|
359 |
gr.Markdown("""
|
@@ -367,19 +321,17 @@ with image_blocks as demo:
|
|
367 |
""")
|
368 |
with gr.Column():
|
369 |
try_button = gr.Button(value="Dressing")
|
370 |
-
with gr.Accordion(label="Advanced Settings", open=
|
371 |
with gr.Row(elem_id="prompt-container"):
|
372 |
with gr.Row():
|
373 |
prompt = gr.Textbox(placeholder="Description of prompt ex) A beautiful woman dress Short Sleeve Round Neck T-shirts",value='A beautiful woman',
|
374 |
show_label=False, elem_id="prompt")
|
375 |
-
|
376 |
-
# neg_prompt = gr.Textbox(placeholder="Description of neg prompt ex) Short Sleeve Round Neck T-shirts",
|
377 |
-
# show_label=False, elem_id="neg_prompt")
|
378 |
with gr.Row():
|
379 |
-
cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=0.0, maximum=1.0, value=0.
|
380 |
visible=True)
|
381 |
with gr.Row():
|
382 |
-
caption_guidance_scale = gr.Slider(label="Prompt Guidance Scale", minimum=1, maximum=10., value=
|
383 |
visible=True)
|
384 |
with gr.Row():
|
385 |
face_guidance_scale = gr.Slider(label="Face Guidance Scale", minimum=0.0, maximum=2.0, value=0.9, step=0.1,
|
|
|
39 |
from insightface.utils import face_align
|
40 |
|
41 |
|
|
|
|
|
42 |
parser = argparse.ArgumentParser(description='IMAGDressing-v1')
|
|
|
43 |
parser.add_argument('--if_ipa', type=bool, default=True)
|
44 |
parser.add_argument('--if_control', type=bool, default=True)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
args = parser.parse_args()
|
47 |
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
args.device = "cuda"
|
|
|
55 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder").to(dtype=torch.float16, device=args.device)
|
56 |
unet = UNet2DConditionModel.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", subfolder="unet").to(dtype=torch.float16,device=args.device)
|
57 |
|
|
|
|
|
58 |
#face_model
|
59 |
app = FaceAnalysis(model_path="buffalo_l", providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
|
60 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
|
|
85 |
elif name.startswith("down_blocks"):
|
86 |
block_id = int(name[len("down_blocks.")])
|
87 |
hidden_size = unet.config.block_out_channels[block_id]
|
88 |
+
|
89 |
if cross_attention_dim is None:
|
90 |
attn_procs[name] = RefLoraSAttnProcessor2_0(name, hidden_size)
|
91 |
else:
|
|
|
134 |
set_alpha_to_one=False,
|
135 |
steps_offset=1,
|
136 |
)
|
|
|
137 |
|
138 |
control_net_openpose = ControlNetModel.from_pretrained(
|
139 |
"lllyasviel/control_v11p_sd15_openpose",
|
140 |
torch_dtype=torch.float16).to(device=args.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
img_transform = transforms.Compose([
|
143 |
transforms.Resize([640, 512], interpolation=transforms.InterpolationMode.BILINEAR),
|
|
|
162 |
@spaces.GPU
|
163 |
def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale,
|
164 |
face_guidance_scale,self_guidance_scale, cross_guidance_scale,if_ipa, if_post, if_control, denoise_steps, seed=42):
|
165 |
+
|
166 |
if prompt is None:
|
167 |
prompt = "a photography of a model"
|
168 |
prompt = prompt + ', best quality, high quality'
|
169 |
print(prompt, cloth_guidance_scale, if_ipa, if_control, denoise_steps, seed)
|
170 |
clip_image_processor = CLIPImageProcessor()
|
171 |
+
|
172 |
if not garm_img:
|
173 |
raise gr.Error("请上传衣服 / Please upload garment")
|
174 |
clothes_img = resize_img(garm_img)
|
175 |
vae_clothes = img_transform(clothes_img).unsqueeze(0)
|
|
|
176 |
ref_clip_image = clip_image_processor(images=clothes_img, return_tensors="pt").pixel_values
|
177 |
|
178 |
if if_ipa:
|
|
|
179 |
faces = app.get(face_img)
|
|
|
180 |
if not faces:
|
181 |
raise gr.Error("人脸检测异常,尝试其他肖像 / Abnormal face detection. Try another portrait")
|
182 |
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
183 |
face_image = face_align.norm_crop(face_img, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
184 |
|
185 |
+
|
|
|
|
|
|
|
186 |
face_clip_image = clip_image_processor(images=face_image, return_tensors="pt").pixel_values
|
187 |
else:
|
188 |
faceid_embeds = None
|
|
|
194 |
pose_image = diffusers.utils.load_image(pose_img)
|
195 |
else:
|
196 |
pose_image = None
|
|
|
|
|
|
|
197 |
|
198 |
noise_scheduler = DDIMScheduler(
|
199 |
num_train_timesteps=1000,
|
|
|
204 |
set_alpha_to_one=False,
|
205 |
steps_offset=1,
|
206 |
)
|
207 |
+
|
208 |
pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
|
209 |
text_encoder=text_encoder, image_encoder=image_encoder,
|
210 |
ip_ckpt='./ckpt/ip-adapter-faceid-plus_sd15.bin',
|
|
|
235 |
).images
|
236 |
|
237 |
if if_post and if_ipa:
|
238 |
+
image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch',
|
239 |
+
model_revision='v1.0.3')
|
240 |
output_array = np.array(output[0])
|
241 |
+
|
242 |
bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
|
243 |
+
|
244 |
bgr_image = Image.fromarray(bgr_array)
|
245 |
result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
|
246 |
return result[OutputKeys.OUTPUT_IMG]
|
|
|
306 |
outputs=pose_img,
|
307 |
examples=pose_list_path)
|
308 |
|
309 |
+
|
|
|
|
|
310 |
with gr.Column():
|
|
|
311 |
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
|
312 |
# Add usage tips below the output image
|
313 |
gr.Markdown("""
|
|
|
321 |
""")
|
322 |
with gr.Column():
|
323 |
try_button = gr.Button(value="Dressing")
|
324 |
+
with gr.Accordion(label="Advanced Settings", open=True):
|
325 |
with gr.Row(elem_id="prompt-container"):
|
326 |
with gr.Row():
|
327 |
prompt = gr.Textbox(placeholder="Description of prompt ex) A beautiful woman dress Short Sleeve Round Neck T-shirts",value='A beautiful woman',
|
328 |
show_label=False, elem_id="prompt")
|
329 |
+
|
|
|
|
|
330 |
with gr.Row():
|
331 |
+
cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=0.0, maximum=1.0, value=0.85, step=0.1,
|
332 |
visible=True)
|
333 |
with gr.Row():
|
334 |
+
caption_guidance_scale = gr.Slider(label="Prompt Guidance Scale", minimum=1, maximum=10., value=6.5, step=0.1,
|
335 |
visible=True)
|
336 |
with gr.Row():
|
337 |
face_guidance_scale = gr.Slider(label="Face Guidance Scale", minimum=0.0, maximum=2.0, value=0.9, step=0.1,
|