File size: 6,034 Bytes
7d4afe8
c739865
 
7d4afe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c88dcd6
7d4afe8
c739865
 
7d4afe8
 
c88dcd6
c739865
 
 
 
7d4afe8
 
 
 
 
 
 
 
 
0eabe5d
7d4afe8
c739865
7d4afe8
c739865
 
 
 
 
7d4afe8
c739865
 
 
 
 
 
 
 
 
 
 
7d4afe8
 
0eabe5d
 
 
7d4afe8
 
 
 
 
 
c739865
7d4afe8
 
 
 
c739865
7d4afe8
 
228ab90
7d4afe8
c739865
7d4afe8
 
 
 
 
 
9746259
 
 
 
 
 
 
 
 
 
7d4afe8
 
 
c739865
 
 
0eabe5d
 
 
 
 
7d4afe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eabe5d
 
 
 
 
 
7d4afe8
 
 
3798f72
7d4afe8
0eabe5d
 
 
 
 
 
 
 
7d4afe8
 
 
c88dcd6
7d4afe8
3798f72
9746259
 
 
7d4afe8
 
 
 
 
 
0eabe5d
7d4afe8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import random
from time import time_ns, sleep
from threading import Lock

import torch

import spaces
import gradio as gr
from transformers import set_seed

from kgen import models
from diff import load_model, encode_prompts
from dtg import process
from meta import (
    DEFAULT_STYLE_LIST,
    MODEL_FORMAT_LIST,
    MODEL_DEFAULT_QUALITY_LIST,
    DEFAULT_NEGATIVE_PROMPT,
)


sdxl_pipe = load_model(model_id="KBlueLeaf/Kohaku-XL-Zeta", device="cuda")
models.load_model(models.model_list[0])
models.text_model.cpu()
torch.cuda.empty_cache()

current_dtg_model = models.model_list[0]
current_sdxl_model = "KBlueLeaf/Kohaku-XL-Zeta"

model_loading_lock = Lock()
model_running_lock = Lock()
model_running = 0


@spaces.GPU
def gen(
    sdxl_model: str,
    dtg_model: str,
    style: str,
    base_prompt: str,
    addon_prompt: str = "",
    seed: int = -1,
):
    global current_dtg_model, current_sdxl_model, sdxl_pipe, model_running
    if sdxl_model != current_sdxl_model:
        with model_loading_lock:
            while model_running:
                sleep(0.01)
            sdxl_pipe = load_model(model_id=sdxl_model, device="cuda")
            current_sdxl_model = sdxl_model
    if dtg_model != current_dtg_model:
        with model_loading_lock:
            while model_running:
                sleep(0.01)
            models.load_model(dtg_model)
            current_dtg_model = dtg_model

    with model_loading_lock:
        pass

    with model_running_lock:
        model_running += 1

    t0 = time_ns()
    seed = int(seed)
    if seed == -1:
        seed = random.randint(0, 2**31 - 1)

    prompt = (
        f"{base_prompt}, {addon_prompt}, "
        f"{DEFAULT_STYLE_LIST[style]}, "
        f"{MODEL_DEFAULT_QUALITY_LIST[sdxl_model]}, "
    )
    models.text_model.cuda()
    full_prompt = process(
        prompt,
        aspect_ratio=1.0,
        seed=seed,
        tag_length="long",
        ban_tags=".*alternate.*, character doll, multiple.*, .*cosplay.*, .*name, .*text.*",
        format=MODEL_FORMAT_LIST[sdxl_model],
        temperature=1.0,
    )
    models.text_model.cpu()
    torch.cuda.empty_cache()

    prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2 = (
        encode_prompts(sdxl_pipe, full_prompt, DEFAULT_NEGATIVE_PROMPT)
    )
    set_seed(seed)
    result = sdxl_pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_embeds2,
        negative_pooled_prompt_embeds=neg_pooled_embeds2,
        num_inference_steps=24,
        width=1024,
        height=1024,
        guidance_scale=6.0,
    ).images[0]
    torch.cuda.empty_cache()
    t1 = time_ns()

    with model_running_lock:
        model_running -= 1

    return (
        result.convert("RGB"),
        full_prompt,
        f"Cost: {(t1 - t0) / 1e9:.4}sec || Seed: {seed}",
    )


if __name__ == "__main__":
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("""# This Cute Dragon Girl Doesn't Exist""")
        with gr.Accordion("Introduction and Instructions", open=False):
            gr.Markdown(
                """
### What is this:
"This Cute Dragon Girl Doesn't Exist" is a Demo for KGen System(DanTagGen) with SDXL anime models.
It is aimed to show how the DanTagGen can be used to "refine/upsample" simple prompt to help the T2I model.

Since I already have some application and demo on DanTagGen.
This demo is designed to be more "simple" than before.

Just one click, and get the result with high quality and high diversity.

### How to use it:
click "Next" button until you get the dragon girl you like.

### Resources:
- My anime model: [Kohaku XL Epsilon](https://huggingface.co/KBlueLeaf/Kohaku-XL-Epsilon)
- DanTagGen: [DanTagGen](https://huggingface.co/KBlueLeaf/DanTagGen-beta)
- DanTagGen extension: [z-a1111-sd-webui-dtg](https://github.com/KohakuBlueleaf/z-a1111-sd-webui-dtg)
"""
            )
        with gr.Row():
            with gr.Column(scale=3):
                with gr.Row():
                    sdxl_model = gr.Dropdown(
                        MODEL_FORMAT_LIST,
                        label="SDXL Model",
                        value=list(MODEL_FORMAT_LIST)[0],
                    )
                    dtg_model = gr.Dropdown(
                        models.model_list,
                        label="DTG Model",
                        value=models.model_list[0],
                    )
                with gr.Row():
                    base_prompt = gr.Textbox(
                        label="Base prompt",
                        lines=1,
                        value="1girl, solo, dragon girl, dragon wings, dragon horns, dragon tail",
                        interactive=False,
                    )
                    addon_propmt = gr.Textbox(
                        label="Addon prompt",
                        lines=1,
                        value="cowboy shot",
                    )
                with gr.Row():
                    seed = gr.Number(
                        label="Seed (-1 for random)",
                        value=-1,
                        minimum=-1,
                        maximum=2**31 - 1,
                        precision=0,
                    )
                    style = gr.Dropdown(
                        DEFAULT_STYLE_LIST,
                        label="Style",
                        value=list(DEFAULT_STYLE_LIST)[-2],
                    )
                submit = gr.Button("Next", variant="primary")
                dtg_output = gr.TextArea(
                    label="DTG output", lines=9, show_copy_button=True
                )
                cost_time = gr.Markdown()
            with gr.Column(scale=4):
                result = gr.Image(label="Result", type="numpy", interactive=False)

        submit.click(
            fn=gen,
            inputs=[sdxl_model, dtg_model, style, base_prompt, addon_propmt, seed],
            outputs=[result, dtg_output, cost_time],
        )

    demo.launch()