Spaces:
Running
Running
''' | |
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) | |
@author: yangxy (yangtao9009@gmail.com) | |
''' | |
import torch | |
import os | |
import cv2 | |
import glob | |
import numpy as np | |
from torch import nn | |
import torch.nn.functional as F | |
from torchvision import transforms, utils | |
from model import FullGenerator, FullGenerator_SR | |
class FaceGAN(object): | |
def __init__(self, base_dir='./', size=512, out_size=None, model=None, channel_multiplier=2, narrow=1, key=None, is_norm=True, device='cuda'): | |
self.mfile = os.path.join(base_dir, 'weights', model+'.pth') | |
self.n_mlp = 8 | |
self.device = device | |
self.is_norm = is_norm | |
self.in_resolution = size | |
self.out_resolution = size if out_size == None else out_size | |
self.key = key | |
self.load_model(channel_multiplier, narrow) | |
def load_model(self, channel_multiplier=2, narrow=1): | |
if self.in_resolution == self.out_resolution: | |
self.model = FullGenerator(self.in_resolution, 512, self.n_mlp, channel_multiplier, narrow=narrow, device=self.device) | |
else: | |
self.model = FullGenerator_SR(self.in_resolution, self.out_resolution, 512, self.n_mlp, channel_multiplier, narrow=narrow, device=self.device) | |
pretrained_dict = torch.load(self.mfile, map_location=torch.device('cpu')) | |
if self.key is not None: pretrained_dict = pretrained_dict[self.key] | |
self.model.load_state_dict(pretrained_dict) | |
self.model.to(self.device) | |
self.model.eval() | |
def process(self, img): | |
img = cv2.resize(img, (self.in_resolution, self.in_resolution)) | |
img_t = self.img2tensor(img) | |
with torch.no_grad(): | |
out, __ = self.model(img_t) | |
del img_t | |
out = self.tensor2img(out) | |
return out | |
def img2tensor(self, img): | |
img_t = torch.from_numpy(img).to(self.device)/255. | |
if self.is_norm: | |
img_t = (img_t - 0.5) / 0.5 | |
img_t = img_t.permute(2, 0, 1).unsqueeze(0).flip(1) # BGR->RGB | |
return img_t | |
def tensor2img(self, img_t, pmax=255.0, imtype=np.uint8): | |
if self.is_norm: | |
img_t = img_t * 0.5 + 0.5 | |
img_t = img_t.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR | |
img_np = np.clip(img_t.float().cpu().numpy(), 0, 1) * pmax | |
return img_np.astype(imtype) |