Spaces:
Runtime error
Runtime error
import pdb | |
import torch | |
def span_xx_to_cxw(xx_spans): | |
""" | |
Args: | |
xx_spans: tensor, (#windows, 2) or (..., 2), each row is a window of format (st, ed) | |
Returns: | |
cxw_spans: tensor, (#windows, 2), each row is a window of format (center=(st+ed)/2, width=(ed-st)) | |
>>> spans = torch.Tensor([[0, 1], [0.2, 0.4]]) | |
>>> span_xx_to_cxw(spans) | |
tensor([[0.5000, 1.0000], | |
[0.3000, 0.2000]]) | |
>>> spans = torch.Tensor([[[0, 1], [0.2, 0.4]]]) | |
>>> span_xx_to_cxw(spans) | |
tensor([[[0.5000, 1.0000], | |
[0.3000, 0.2000]]]) | |
""" | |
center = xx_spans.sum(-1) * 0.5 | |
width = xx_spans[..., 1] - xx_spans[..., 0] | |
return torch.stack([center, width], dim=-1) | |
def span_cxw_to_xx(cxw_spans): | |
""" | |
Args: | |
cxw_spans: tensor, (#windows, 2) or (..., 2), the last dim is a row denoting a window of format (center, width) | |
>>> spans = torch.Tensor([[0.5000, 1.0000], [0.3000, 0.2000]]) | |
>>> span_cxw_to_xx(spans) | |
tensor([[0.0000, 1.0000], | |
[0.2000, 0.4000]]) | |
>>> spans = torch.Tensor([[[0.5000, 1.0000], [0.3000, 0.2000]]]) | |
>>> span_cxw_to_xx(spans) | |
tensor([[[0.0000, 1.0000], | |
[0.2000, 0.4000]]]) | |
""" | |
x1 = cxw_spans[..., 0] - 0.5 * cxw_spans[..., 1] | |
x2 = cxw_spans[..., 0] + 0.5 * cxw_spans[..., 1] | |
return torch.stack([x1, x2], dim=-1) | |
def temporal_iou(spans1, spans2): | |
""" | |
Args: | |
spans1: (N, 2) torch.Tensor, each row defines a span [st, ed] | |
spans2: (M, 2) torch.Tensor, ... | |
Returns: | |
iou: (N, M) torch.Tensor | |
union: (N, M) torch.Tensor | |
>>> test_spans1 = torch.Tensor([[0, 0.2], [0.5, 1.0]]) | |
>>> test_spans2 = torch.Tensor([[0, 0.3], [0., 1.0]]) | |
>>> temporal_iou(test_spans1, test_spans2) | |
(tensor([[0.6667, 0.2000], | |
[0.0000, 0.5000]]), | |
tensor([[0.3000, 1.0000], | |
[0.8000, 1.0000]])) | |
""" | |
areas1 = spans1[:, 1] - spans1[:, 0] # (N, ) | |
areas2 = spans2[:, 1] - spans2[:, 0] # (M, ) | |
left = torch.max(spans1[:, None, 0], spans2[:, 0]) # (N, M) | |
right = torch.min(spans1[:, None, 1], spans2[:, 1]) # (N, M | |
inter = (right - left).clamp(min=0) # (N, M) | |
union = areas1[:, None] + areas2 - inter # (N, M) | |
iou = inter / union | |
return iou, union | |
def temporal_intersection_over_pred(gt_spans, pred_spans): | |
""" intersection over the second input spans | |
Args: | |
gt_spans: (N, 2), | |
pred_spans: (M, 2) | |
Returns: | |
""" | |
left = torch.max(gt_spans[:, None, 0], pred_spans[:, 0]) | |
right = torch.min(gt_spans[:, None, 1], pred_spans[:, 1]) | |
inter = (right - left).clamp(min=0) # (N, M) | |
inter_over_pred = inter / (pred_spans[:, 1] - pred_spans[:, 0]) | |
return inter_over_pred | |
def generalized_temporal_iou(spans1, spans2): | |
""" | |
Generalized IoU from https://giou.stanford.edu/ | |
Also reference to DETR implementation of generalized_box_iou | |
https://github.com/facebookresearch/detr/blob/master/util/box_ops.py#L40 | |
Args: | |
spans1: (N, 2) torch.Tensor, each row defines a span in xx format [st, ed] | |
spans2: (M, 2) torch.Tensor, ... | |
Returns: | |
giou: (N, M) torch.Tensor | |
>>> test_spans1 = torch.Tensor([[0, 0.2], [0.5, 1.0]]) | |
>>> test_spans2 = torch.Tensor([[0, 0.3], [0., 1.0]]) | |
>>> generalized_temporal_iou(test_spans1, test_spans2) | |
tensor([[ 0.6667, 0.2000], | |
[-0.2000, 0.5000]]) | |
""" | |
spans1 = spans1.float() | |
spans2 = spans2.float() | |
assert (spans1[:, 1] >= spans1[:, 0]).all() | |
assert (spans2[:, 1] >= spans2[:, 0]).all() | |
iou, union = temporal_iou(spans1, spans2) | |
left = torch.min(spans1[:, None, 0], spans2[:, 0]) # (N, M) | |
right = torch.max(spans1[:, None, 1], spans2[:, 1]) # (N, M) | |
enclosing_area = (right - left).clamp(min=0) # (N, M) | |
return iou - (enclosing_area - union) / enclosing_area | |