|
import gradio as gr |
|
|
|
from autotab import AutoTab |
|
import json |
|
|
|
|
|
def auto_tabulator_completion( |
|
in_file, |
|
instruction, |
|
max_examples, |
|
model_name, |
|
generation_config, |
|
save_every, |
|
): |
|
output_file_name = "ouput.xlsx" |
|
autotab = AutoTab( |
|
in_file_path=in_file.name, |
|
instruction=instruction, |
|
out_file_path=output_file_name, |
|
max_examples=max_examples, |
|
model_name=model_name, |
|
api_key="sk-exhahhjfqyanmwewndukcqtrpegfdbwszkjucvcpajdufiah", |
|
base_url="https://public-beta-api.siliconflow.cn/v1", |
|
generation_config=json.loads(generation_config), |
|
save_every=save_every, |
|
) |
|
autotab.run() |
|
return output_file_name, autotab.data[:15] |
|
|
|
|
|
|
|
inputs = [ |
|
gr.File(label="Input Excel File"), |
|
gr.Textbox( |
|
value="You are a helpful assistant. Help me finish the task.", |
|
label="Instruction", |
|
), |
|
gr.Slider(value=5, minimum=1, maximum=100, label="Max Examples"), |
|
gr.Textbox(value="Qwen/Qwen2-7B-Instruct", label="Model Name"), |
|
gr.Textbox( |
|
value='{"temperature": 0, "max_tokens": 128}', |
|
label="Generation Config in Dict", |
|
), |
|
gr.Slider(value=10, minimum=1, maximum=1000, label="Save Every N Steps"), |
|
] |
|
|
|
outputs = [ |
|
gr.File(label="Output Excel File"), |
|
gr.Dataframe(label="First 15 rows."), |
|
] |
|
|
|
gr.Interface( |
|
fn=auto_tabulator_completion, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title="Auto Tabulator Completion", |
|
description="Automatically complete missing output values in tabular data based on in-context learning.", |
|
).launch() |
|
|