File size: 10,453 Bytes
217892e
 
 
 
 
 
a1654f3
 
 
dbc91d5
a1654f3
3e87e84
 
a74d94b
3e87e84
 
 
 
a74d94b
 
a1654f3
3e87e84
a1654f3
 
 
 
 
 
a74d94b
 
a007d1e
 
 
459ea62
a74d94b
 
 
 
 
 
 
 
 
 
 
 
 
 
a1654f3
 
a74d94b
a1654f3
 
a74d94b
a1654f3
a74d94b
a1654f3
217892e
a74d94b
 
 
 
 
 
 
217892e
a74d94b
a007d1e
a74d94b
 
3e87e84
9686871
 
 
bf4e8a9
9686871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e87e84
a74d94b
 
3e87e84
dbc91d5
217892e
3e87e84
217892e
 
dbc91d5
 
 
 
 
 
 
 
 
217892e
 
 
 
 
a74d94b
 
 
217892e
a74d94b
dbc91d5
 
217892e
 
 
 
 
 
a74d94b
8a16657
a007d1e
a74d94b
 
217892e
a74d94b
dbc91d5
217892e
dbc91d5
 
 
 
217892e
dbc91d5
 
 
 
 
 
 
 
 
 
217892e
a74d94b
217892e
dbc91d5
 
 
 
 
 
217892e
 
 
a74d94b
 
 
 
217892e
a74d94b
217892e
3e87e84
a74d94b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c87c622
217892e
a74d94b
 
 
 
 
3e87e84
a74d94b
 
 
 
 
 
3e87e84
a74d94b
217892e
 
 
 
a74d94b
217892e
 
a74d94b
 
 
c87c622
a74d94b
 
 
 
 
 
 
 
c87c622
 
a74d94b
 
c87c622
 
 
a74d94b
 
 
 
c87c622
 
 
 
 
 
 
 
 
a74d94b
c87c622
a43ac05
a74d94b
c87c622
a74d94b
 
 
 
 
c87c622
217892e
 
 
 
 
a74d94b
 
 
 
 
 
 
 
217892e
 
 
 
 
 
a74d94b
 
 
 
 
 
217892e
 
 
c87c622
 
 
a74d94b
 
 
 
 
 
c87c622
 
 
217892e
a74d94b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import PyPDF2
from openpyxl import load_workbook
from pptx import Presentation
import gradio as gr
import io
from huggingface_hub import InferenceClient
import re
import zipfile
import xml.etree.ElementTree as ET
import filetype

# Constants
CHUNK_SIZE = 32000
MAX_NEW_TOKENS = 4096

# Initialize the Mistral chat model
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")

# --- Utility Functions ---

def xml2text(xml):
    """Extracts text from XML data."""
    text = u''
    root = ET.fromstring(xml)
    for child in root.iter():
        text += child.text + " " if child.text is not None else ''
    return text

def clean_text(content):
    """Cleans text content based on the 'clean' parameter."""
    content = content.replace('\n', ' ')
    content = content.replace('\r', ' ')
    content = content.replace('\t', ' ')
    content = re.sub(r'\s+', ' ', content)
    return content


def split_content(content, chunk_size=CHUNK_SIZE):
    """Splits content into chunks of a specified size."""
    chunks = []
    for i in range(0, len(content), chunk_size):
        chunks.append(content[i:i + chunk_size])
    return chunks

# --- Document Reading Functions ---

def extract_text_from_docx(docx_data, clean=True):
    """Extracts text from DOCX files."""
    text = u''
    zipf = zipfile.ZipFile(io.BytesIO(docx_data))

    filelist = zipf.namelist()

    header_xmls = 'word/header[0-9]*.xml'
    for fname in filelist:
        if re.match(header_xmls, fname):
            text += xml2text(zipf.read(fname))

    doc_xml = 'word/document.xml'
    text += xml2text(zipf.read(doc_xml))

    footer_xmls = 'word/footer[0-9]*.xml'
    for fname in filelist:
        if re.match(footer_xmls, fname):
            text += xml2text(zipf.read(fname))

    zipf.close()
    if clean:
        text = clean_text(text)
    return text, len(text)

def extract_text_from_pptx(pptx_data, clean=True):
    """Extracts text from PPT files."""
    text = u''
    zipf = zipfile.ZipFile(io.BytesIO(pptx_data))

    filelist = zipf.namelist()

    # Extract text from slide notes
    notes_xmls = 'ppt/notesSlides/notesSlide[0-9]*.xml'
    for fname in filelist:
        if re.match(notes_xmls, fname):
            text += xml2text(zipf.read(fname))

    # Extract text from slide content (shapes and text boxes)
    slide_xmls = 'ppt/slides/slide[0-9]*.xml'
    for fname in filelist:
        if re.match(slide_xmls, fname):
            text += xml2text(zipf.read(fname))

    zipf.close()
    if clean:
        text = clean_text(text)
    return text, len(text)

def read_document(file, clean=True):
    """Reads content from various document formats."""
    file_path = file.name
    # No file extension used

    with open(file_path, "rb") as f:
        file_content = f.read()

    kind = filetype.guess(file_content)

    if kind is None:
        return "Cannot guess file type", 0  # Handle unknown file types

    mime = kind.mime

    if mime == "application/pdf":
        # PDF Handling (unchanged)
        try:
            pdf_reader = PyPDF2.PdfReader(io.BytesIO(file_content))
            content = ''
            for page in range(len(pdf_reader.pages)):
                content += pdf_reader.pages[page].extract_text()
            if clean:
                content = clean_text(content)
            return content, len(content)
        except Exception as e:
            return f"Error reading PDF: {e}", 0
    elif mime == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
        # XLSX Handling (unchanged)
        try:
            wb = load_workbook(io.BytesIO(file_content))
            content = ''
            for sheet in wb.worksheets:
                for row in sheet.rows:
                    for cell in row:
                        if cell.value is not None:
                            content += str(cell.value) + ' '
            if clean:
                content = clean_text(content)
            return content, len(content)
        except Exception as e:
            return f"Error reading XLSX: {e}", 0
    elif mime == "text/plain":
        try:
            content = file_content.decode('utf-8')
            if clean:
                content = clean_text(content)
            return content, len(content)
        except Exception as e:
            return f"Error reading TXT file: {e}", 0
    elif mime == "text/csv":
        try:
            content = file_content.decode('utf-8')
            if clean:
                content = clean_text(content)
            return content, len(content)
        except Exception as e:
            return f"Error reading CSV file: {e}", 0
    elif mime == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
        try:
            return extract_text_from_docx(file_content, clean)
        except Exception as e:
            return f"Error reading DOCX: {e}", 0
    elif mime == "application/vnd.openxmlformats-officedocument.presentationml.presentation":
        try:
            return extract_text_from_pptx(file_content, clean)
        except Exception as e:
            return f"Error reading PPTX: {e}", 0

    else:
        try:
            content = file_content.decode('utf-8')
            if clean:
                content = clean_text(content)
            return content, len(content)
        except Exception as e:
            return f"Error reading file: {e}", 0


# --- Chat Functions ---

def generate_mistral_response(message):
    """Generates a response from the Mistral API."""
    stream = client.text_generation(
        message,
        max_new_tokens=MAX_NEW_TOKENS,
        stream=True,
        details=True,
        return_full_text=False
    )
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text
        yield output


def chat_document(file, question, clean=True):
    """Chats with a document using a single Mistral API call."""
    content, length = read_document(file, clean)
    if length > CHUNK_SIZE:
        content = content[:CHUNK_SIZE]  # Limit to max chunk size

    system_prompt = """
    You are a helpful and informative assistant that can answer questions based on the content of documents. 
    You will receive the content of a document and a question about it. 
    Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
    If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
    """

    message = f"""[INST] [SYSTEM] {system_prompt} 
    Document Content: {content}
    Question: {question}
    Answer:"""

    yield from generate_mistral_response(message)


def chat_document_v2(file, question, clean=True):
    """Chats with a document using chunk-based Mistral API calls and summarizes the answers."""
    content, length = read_document(file, clean)
    chunks = split_content(content)

    system_prompt = """
    You are a helpful and informative assistant that can answer questions based on the content of documents. 
    You will receive the content of a document and a question about it. 
    Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
    If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
    """

    all_answers = []
    for chunk in chunks:
        message = f"""[INST] [SYSTEM] {system_prompt} 
        Document Content: {chunk[:CHUNK_SIZE]} 
        Question: {question}
        Answer:"""

        response = ""
        for stream_response in generate_mistral_response(message):
            response = stream_response  # Update with latest response
        all_answers.append(response)

    # Summarize all answers using Mistral
    summary_prompt = """
    You are a helpful and informative assistant that can summarize multiple answers related to the same question. 
    You will receive a list of answers to a question, and your task is to generate a concise and comprehensive summary that incorporates the key information from all the answers.
    Avoid repeating information unnecessarily and focus on providing the most relevant and accurate summary based on the provided answers.
    
    Answers:
    """

    all_answers_str = "\n".join(all_answers)
    summary_message = f"""[INST] [SYSTEM] {summary_prompt}
    {all_answers_str[:30000]} 
    Summary:"""

    yield from generate_mistral_response(summary_message)


# --- Gradio Interface ---

with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.TabItem("Document Reader"):
            iface1 = gr.Interface(
                fn=read_document,
                inputs=[
                    gr.File(label="Upload a Document"),
                    gr.Checkbox(label="Clean Text", value=True),
                ],
                outputs=[
                    gr.Textbox(label="Document Content"),
                    gr.Number(label="Document Length (characters)"),
                ],
                title="Document Reader",
                description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content."
            )
        with gr.TabItem("Document Chat"):
            iface2 = gr.Interface(
                fn=chat_document,
                inputs=[
                    gr.File(label="Upload a Document"),
                    gr.Textbox(label="Question"),
                    gr.Checkbox(label="Clean and Compress Text", value=True),
                ],
                outputs=gr.Markdown(label="Answer"),
                title="Document Chat",
                description="Upload a document and ask questions about its content."
            )
        with gr.TabItem("Document Chat V2"):
            iface3 = gr.Interface(
                fn=chat_document_v2,
                inputs=[
                    gr.File(label="Upload a Document"),
                    gr.Textbox(label="Question"),
                    gr.Checkbox(label="Clean Text", value=True),
                ],
                outputs=gr.Markdown(label="Answer"),
                title="Document Chat V2",
                description="Upload a document and ask questions about its content (using chunk-based approach)."
            )

demo.launch()