Spaces:
Running
Running
import PyPDF2 | |
from openpyxl import load_workbook | |
from pptx import Presentation | |
import gradio as gr | |
import io | |
from huggingface_hub import InferenceClient | |
import re | |
import zipfile | |
import xml.etree.ElementTree as ET | |
import filetype | |
# Constants | |
CHUNK_SIZE = 32000 | |
MAX_NEW_TOKENS = 4096 | |
# Initialize the Mistral chat model | |
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407") | |
# --- Utility Functions --- | |
def xml2text(xml): | |
"""Extracts text from XML data.""" | |
text = u'' | |
root = ET.fromstring(xml) | |
for child in root.iter(): | |
text += child.text + " " if child.text is not None else '' | |
return text | |
def clean_text(content): | |
"""Cleans text content based on the 'clean' parameter.""" | |
content = content.replace('\n', ' ') | |
content = content.replace('\r', ' ') | |
content = content.replace('\t', ' ') | |
content = re.sub(r'\s+', ' ', content) | |
return content | |
def split_content(content, chunk_size=CHUNK_SIZE): | |
"""Splits content into chunks of a specified size.""" | |
chunks = [] | |
for i in range(0, len(content), chunk_size): | |
chunks.append(content[i:i + chunk_size]) | |
return chunks | |
# --- Document Reading Functions --- | |
def extract_text_from_docx(docx_data, clean=True): | |
"""Extracts text from DOCX files.""" | |
text = u'' | |
zipf = zipfile.ZipFile(io.BytesIO(docx_data)) | |
filelist = zipf.namelist() | |
header_xmls = 'word/header[0-9]*.xml' | |
for fname in filelist: | |
if re.match(header_xmls, fname): | |
text += xml2text(zipf.read(fname)) | |
doc_xml = 'word/document.xml' | |
text += xml2text(zipf.read(doc_xml)) | |
footer_xmls = 'word/footer[0-9]*.xml' | |
for fname in filelist: | |
if re.match(footer_xmls, fname): | |
text += xml2text(zipf.read(fname)) | |
zipf.close() | |
if clean: | |
text = clean_text(text) | |
return text, len(text) | |
def extract_text_from_pptx(pptx_data, clean=True): | |
"""Extracts text from PPT files.""" | |
text = u'' | |
zipf = zipfile.ZipFile(io.BytesIO(pptx_data)) | |
filelist = zipf.namelist() | |
# Extract text from slide notes | |
notes_xmls = 'ppt/notesSlides/notesSlide[0-9]*.xml' | |
for fname in filelist: | |
if re.match(notes_xmls, fname): | |
text += xml2text(zipf.read(fname)) | |
# Extract text from slide content (shapes and text boxes) | |
slide_xmls = 'ppt/slides/slide[0-9]*.xml' | |
for fname in filelist: | |
if re.match(slide_xmls, fname): | |
text += xml2text(zipf.read(fname)) | |
zipf.close() | |
if clean: | |
text = clean_text(text) | |
return text, len(text) | |
def read_document(file, clean=True): | |
"""Reads content from various document formats.""" | |
file_path = file.name | |
# No file extension used | |
with open(file_path, "rb") as f: | |
file_content = f.read() | |
kind = filetype.guess(file_content) | |
if kind is None: | |
return "Cannot guess file type", 0 # Handle unknown file types | |
mime = kind.mime | |
if mime == "application/pdf": | |
# PDF Handling (unchanged) | |
try: | |
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file_content)) | |
content = '' | |
for page in range(len(pdf_reader.pages)): | |
content += pdf_reader.pages[page].extract_text() | |
if clean: | |
content = clean_text(content) | |
return content, len(content) | |
except Exception as e: | |
return f"Error reading PDF: {e}", 0 | |
elif mime == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": | |
# XLSX Handling (unchanged) | |
try: | |
wb = load_workbook(io.BytesIO(file_content)) | |
content = '' | |
for sheet in wb.worksheets: | |
for row in sheet.rows: | |
for cell in row: | |
if cell.value is not None: | |
content += str(cell.value) + ' ' | |
if clean: | |
content = clean_text(content) | |
return content, len(content) | |
except Exception as e: | |
return f"Error reading XLSX: {e}", 0 | |
elif mime == "text/plain": | |
try: | |
content = file_content.decode('utf-8') | |
if clean: | |
content = clean_text(content) | |
return content, len(content) | |
except Exception as e: | |
return f"Error reading TXT file: {e}", 0 | |
elif mime == "text/csv": | |
try: | |
content = file_content.decode('utf-8') | |
if clean: | |
content = clean_text(content) | |
return content, len(content) | |
except Exception as e: | |
return f"Error reading CSV file: {e}", 0 | |
elif mime == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": | |
try: | |
return extract_text_from_docx(file_content, clean) | |
except Exception as e: | |
return f"Error reading DOCX: {e}", 0 | |
elif mime == "application/vnd.openxmlformats-officedocument.presentationml.presentation": | |
try: | |
return extract_text_from_pptx(file_content, clean) | |
except Exception as e: | |
return f"Error reading PPTX: {e}", 0 | |
else: | |
try: | |
content = file_content.decode('utf-8') | |
if clean: | |
content = clean_text(content) | |
return content, len(content) | |
except Exception as e: | |
return f"Error reading file: {e}", 0 | |
# --- Chat Functions --- | |
def generate_mistral_response(message): | |
"""Generates a response from the Mistral API.""" | |
stream = client.text_generation( | |
message, | |
max_new_tokens=MAX_NEW_TOKENS, | |
stream=True, | |
details=True, | |
return_full_text=False | |
) | |
output = "" | |
for response in stream: | |
if not response.token.text == "</s>": | |
output += response.token.text | |
yield output | |
def chat_document(file, question, clean=True): | |
"""Chats with a document using a single Mistral API call.""" | |
content, length = read_document(file, clean) | |
if length > CHUNK_SIZE: | |
content = content[:CHUNK_SIZE] # Limit to max chunk size | |
system_prompt = """ | |
You are a helpful and informative assistant that can answer questions based on the content of documents. | |
You will receive the content of a document and a question about it. | |
Your task is to provide a concise and accurate answer to the question based solely on the provided document content. | |
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information. | |
""" | |
message = f"""[INST] [SYSTEM] {system_prompt} | |
Document Content: {content} | |
Question: {question} | |
Answer:""" | |
yield from generate_mistral_response(message) | |
def chat_document_v2(file, question, clean=True): | |
"""Chats with a document using chunk-based Mistral API calls and summarizes the answers.""" | |
content, length = read_document(file, clean) | |
chunks = split_content(content) | |
system_prompt = """ | |
You are a helpful and informative assistant that can answer questions based on the content of documents. | |
You will receive the content of a document and a question about it. | |
Your task is to provide a concise and accurate answer to the question based solely on the provided document content. | |
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information. | |
""" | |
all_answers = [] | |
for chunk in chunks: | |
message = f"""[INST] [SYSTEM] {system_prompt} | |
Document Content: {chunk[:CHUNK_SIZE]} | |
Question: {question} | |
Answer:""" | |
response = "" | |
for stream_response in generate_mistral_response(message): | |
response = stream_response # Update with latest response | |
all_answers.append(response) | |
# Summarize all answers using Mistral | |
summary_prompt = """ | |
You are a helpful and informative assistant that can summarize multiple answers related to the same question. | |
You will receive a list of answers to a question, and your task is to generate a concise and comprehensive summary that incorporates the key information from all the answers. | |
Avoid repeating information unnecessarily and focus on providing the most relevant and accurate summary based on the provided answers. | |
Answers: | |
""" | |
all_answers_str = "\n".join(all_answers) | |
summary_message = f"""[INST] [SYSTEM] {summary_prompt} | |
{all_answers_str[:30000]} | |
Summary:""" | |
yield from generate_mistral_response(summary_message) | |
# --- Gradio Interface --- | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
with gr.TabItem("Document Reader"): | |
iface1 = gr.Interface( | |
fn=read_document, | |
inputs=[ | |
gr.File(label="Upload a Document"), | |
gr.Checkbox(label="Clean Text", value=True), | |
], | |
outputs=[ | |
gr.Textbox(label="Document Content"), | |
gr.Number(label="Document Length (characters)"), | |
], | |
title="Document Reader", | |
description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content." | |
) | |
with gr.TabItem("Document Chat"): | |
iface2 = gr.Interface( | |
fn=chat_document, | |
inputs=[ | |
gr.File(label="Upload a Document"), | |
gr.Textbox(label="Question"), | |
gr.Checkbox(label="Clean and Compress Text", value=True), | |
], | |
outputs=gr.Markdown(label="Answer"), | |
title="Document Chat", | |
description="Upload a document and ask questions about its content." | |
) | |
with gr.TabItem("Document Chat V2"): | |
iface3 = gr.Interface( | |
fn=chat_document_v2, | |
inputs=[ | |
gr.File(label="Upload a Document"), | |
gr.Textbox(label="Question"), | |
gr.Checkbox(label="Clean Text", value=True), | |
], | |
outputs=gr.Markdown(label="Answer"), | |
title="Document Chat V2", | |
description="Upload a document and ask questions about its content (using chunk-based approach)." | |
) | |
demo.launch() |