Kiro0o commited on
Commit
ceef143
1 Parent(s): b58e802

Upload 2 files

Browse files
sentiement_analysis.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
sentiement_analysis.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """sentiement_analysis.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1uCHkA4O7IFjR173CabfByPvjfbiz6wY7
8
+ """
9
+
10
+ !pip install diffusers transformers torch numpy scipy gradio datasets
11
+
12
+ !pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio===0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
13
+
14
+ import torch
15
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
16
+ import numpy as np
17
+ from scipy.special import softmax
18
+ import gradio as gr
19
+ torch.cuda.is_available()
20
+
21
+ model_path = "cardiffnlp/twitter-roberta-base-sentiment-latest"
22
+
23
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
24
+ config = AutoConfig.from_pretrained(model_path)
25
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
26
+
27
+ def sentiment_analysis(text):
28
+ encoded_input = tokenizer(text, return_tensors='pt')
29
+ output = model(**encoded_input)
30
+ scores_ = output[0][0].detach().numpy()
31
+ scores_ = softmax(scores_)
32
+ labels = ['Negative', 'Neutral', 'Positive']
33
+ scores = {l: float(s) for (l, s) in zip(labels, scores_)}
34
+ return scores
35
+
36
+ demo = gr.Interface(
37
+ theme=gr.themes.Base(),
38
+ fn=sentiment_analysis,
39
+ inputs=gr.Textbox(placeholder="Write your text here..."),
40
+ outputs="label",
41
+ examples=[
42
+ ["I'm thrilled about the job offer!"],
43
+ ["The weather today is absolutely beautiful."],
44
+ ["I had a fantastic time at the concert last night."],
45
+ ["I'm so frustrated with this software glitch."],
46
+ ["The customer service was terrible at the store."],
47
+ ["I'm really disappointed with the quality of this product."]
48
+ ],
49
+ title='Sentiment Analysis App',
50
+ description='This app classifies a positive, neutral, or negative sentiment.'
51
+ )
52
+
53
+ demo.launch()
54
+
55
+ !ls
56
+ !git add app.py
57
+ !git commit -m "app.py"
58
+ #!git push
59
+ #!git push
60
+
61
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
62
+ from huggingface_hub import notebook_login
63
+
64
+ notebook_login()
65
+
66
+ model.push_to_hub("Kiro0o/bert-sentiment-analysis")
67
+ tokenizer.push_to_hub("Kiro0o/bert-sentiment-analysis")
68
+
69
+ !git clone https://huggingface.co/spaces/Kiro0o/Sentiment