Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import whisper | |
import torchaudio as ta | |
from model_utils import get_processor, get_model, get_whisper_model_small, get_device | |
from config import SAMPLING_RATE, CHUNK_LENGTH_S | |
def detect_language(audio_file): | |
whisper_model = get_whisper_model_small() | |
trimmed_audio = whisper.pad_or_trim(audio_file.squeeze()) | |
mel = whisper.log_mel_spectrogram(trimmed_audio).to(whisper_model.device) | |
_, probs = whisper_model.detect_language(mel) | |
detected_lang = max(probs[0], key=probs[0].get) | |
print(f"Detected language: {detected_lang}") | |
return detected_lang | |
def process_long_audio(waveform, sampling_rate, task="transcribe", language=None): | |
processor = get_processor() | |
model = get_model() | |
device = get_device() | |
input_length = waveform.shape[1] | |
chunk_length = int(CHUNK_LENGTH_S * sampling_rate) | |
chunks = [waveform[:, i:i + chunk_length] for i in range(0, input_length, chunk_length)] | |
results = [] | |
for chunk in chunks: | |
input_features = processor(chunk[0], sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device) | |
with torch.no_grad(): | |
if task == "translate": | |
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate") | |
generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) | |
else: | |
generated_ids = model.generate(input_features) | |
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
results.extend(transcription) | |
# Clear GPU cache | |
torch.cuda.empty_cache() | |
return " ".join(results) | |
def load_and_resample_audio(file): | |
waveform, sampling_rate = ta.load(file) | |
if sampling_rate != SAMPLING_RATE: | |
waveform = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE) | |
return waveform |