ASR_gradio / audio_processing.py
Kr08's picture
Update audio_processing.py
0fd738e verified
raw
history blame
5.99 kB
import torch
import spaces
import whisper
import subprocess
import numpy as np
import gradio as gr
import soundfile as sf
import torchaudio as ta
from model_utils import get_processor, get_model, get_whisper_model_small, get_device
from config import SAMPLING_RATE, CHUNK_LENGTH_S
# def resample_with_ffmpeg(input_file, output_file, target_sr=16000):
# command = [
# 'ffmpeg', '-i', input_file, '-ar', str(target_sr), output_file
# ]
# subprocess.run(command, check=True)
@spaces.GPU
def load_and_resample_audio(file):
try:
# First attempt: Use torchaudio.load()
waveform, sample_rate = torchaudio.load(file)
except Exception as e:
print(f"torchaudio.load() failed: {e}")
try:
# Second attempt: Use soundfile
waveform, sample_rate = sf.read(file)
waveform = torch.from_numpy(waveform.T).float()
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0)
except Exception as e:
print(f"soundfile.read() failed: {e}")
raise ValueError(f"Failed to load audio file: {file}")
print(f"Original audio shape: {waveform.shape}, Sample rate: {sample_rate}")
if sample_rate != SAMPLING_RATE:
try:
waveform = F.resample(waveform, sample_rate, SAMPLING_RATE)
except Exception as e:
print(f"Resampling failed: {e}")
raise ValueError(f"Failed to resample audio from {sample_rate} to {SAMPLING_RATE}")
# Ensure the audio is in the correct shape (mono)
if waveform.dim() > 1 and waveform.shape[0] > 1:
waveform = waveform.mean(dim=0, keepdim=True)
print(f"Processed audio shape: {waveform.shape}, New sample rate: {SAMPLING_RATE}")
return waveform, SAMPLING_RATE
@spaces.GPU
def detect_language(audio):
whisper_model = get_whisper_model_small()
# Save the input audio to a temporary file
ta.save("input_audio.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
# Resample if necessary using ffmpeg
if audio[0] != SAMPLING_RATE:
resample_with_ffmpeg("input_audio.wav", "resampled_audio.wav", target_sr=SAMPLING_RATE)
audio_tensor, _ = ta.load("resampled_audio.wav")
else:
audio_tensor = torch.tensor(audio[1]).float()
# Ensure the audio is in the correct shape (mono)
if audio_tensor.dim() == 2:
audio_tensor = audio_tensor.mean(dim=0)
# Use Whisper's preprocessing
audio_tensor = whisper.pad_or_trim(audio_tensor)
print(f"Audio length after pad/trim: {audio_tensor.shape[-1] / SAMPLING_RATE} seconds")
mel = whisper.log_mel_spectrogram(audio_tensor).to(whisper_model.device)
# Detect language
_, probs = whisper_model.detect_language(mel)
detected_lang = max(probs, key=probs.get)
print(f"Audio shape: {audio_tensor.shape}")
print(f"Mel spectrogram shape: {mel.shape}")
print(f"Detected language: {detected_lang}")
print("Language probabilities:", probs)
return detected_lang
@spaces.GPU
def process_long_audio(audio, task="transcribe", language=None):
if audio[0] != SAMPLING_RATE:
# Save the input audio to a file for ffmpeg processing
ta.save("input_audio_1.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
# Resample using ffmpeg
try:
resample_with_ffmpeg("input_audio_1.wav", "resampled_audio_2.wav", target_sr=SAMPLING_RATE)
except subprocess.CalledProcessError as e:
print(f"ffmpeg failed: {e.stderr}")
raise e
waveform, _ = ta.load("resampled_audio_2.wav")
else:
waveform = torch.tensor(audio[1]).float()
# Ensure the audio is in the correct shape (mono)
if waveform.dim() == 2:
waveform = waveform.mean(dim=0)
print(f"Waveform shape after processing: {waveform.shape}")
if waveform.numel() == 0:
raise ValueError("Waveform is empty. Please check the input audio file.")
input_length = waveform.shape[0] # Since waveform is 1D, access the length with shape[0]
chunk_length = int(CHUNK_LENGTH_S * SAMPLING_RATE)
# Corrected slicing for 1D tensor
chunks = [waveform[i:i + chunk_length] for i in range(0, input_length, chunk_length)]
# Initialize the processor
processor = get_processor()
model = get_model()
device = get_device()
results = []
for chunk in chunks:
input_features = processor(chunk, sampling_rate=SAMPLING_RATE, return_tensors="pt").input_features.to(device)
with torch.no_grad():
if task == "translate":
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate")
generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
else:
generated_ids = model.generate(input_features)
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
results.extend(transcription)
# Clear GPU cache
torch.cuda.empty_cache()
return " ".join(results)
@spaces.GPU
def process_audio(audio):
if audio is None:
return "No file uploaded", "", ""
detected_lang = detect_language(audio)
transcription = process_long_audio(audio, task="transcribe")
translation = process_long_audio(audio, task="translate", language=detected_lang)
return detected_lang, transcription, translation
# Gradio interface
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(),
outputs=[
gr.Textbox(label="Detected Language"),
gr.Textbox(label="Transcription", lines=5),
gr.Textbox(label="Translation", lines=5)
],
title="Audio Transcription and Translation",
description="Upload an audio file to detect its language, transcribe, and translate it.",
allow_flagging="never",
css=".output-textbox { font-family: 'Noto Sans Devanagari', sans-serif; font-size: 18px; }"
)