Spaces:
Runtime error
Runtime error
File size: 2,885 Bytes
b8c39bd d347764 b8c39bd d347764 c25f802 d347764 c25f802 d347764 c25f802 d347764 c25f802 d347764 c25f802 d347764 c25f802 d347764 c25f802 f805e49 c25f802 f805e49 c737803 d347764 226ec3a d347764 f805e49 d347764 c737803 c25f802 c737803 d347764 c25f802 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
"""ML_task3.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1DfK6fjkAd9RjVx3MUGfDtAOulvEenk0E?authuser=0#scrollTo=x0BqFNWue3V8
"""
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor, VitsModel, VitsTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# распознавание речи
asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device)
processor = WhisperProcessor.from_pretrained(
"openai/whisper-small")
translator_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
translator_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
def translator_mul_ru(text):
translation = translator_ru(translator_en(text)[0]['translation_text'])
return translation[0]['translation_text']
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
return outputs["text"]
def synthesise(text):
translated_text = translator_mul_ru(text)
inputs = tokenizer(translated_text, return_tensors="pt")
input_ids = inputs["input_ids"]
with torch.no_grad():
outputs = model(input_ids)
speech = outputs["waveform"]
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
print(translated_text)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech[0]
title = "Speech-to-Speech Translation"
description = """
* Выбранная ASR модель - https://huggingface.co/voidful/wav2vec2-xlsr-multilingual-56
* Перевод текста на русский с помощью модели https://huggingface.co/Helsinki-NLP/opus-mt-mul-en
* Синтез речи на русском языке с помощью модели https://huggingface.co/facebook/mms-tts-rus
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"])
demo.launch()
|