File size: 2,885 Bytes
b8c39bd
 
 
 
 
 
d347764
 
 
 
 
b8c39bd
d347764
 
 
c25f802
 
 
 
 
 
 
 
d347764
 
c25f802
 
d347764
 
c25f802
 
 
 
d347764
 
 
 
 
 
c25f802
 
 
 
 
 
 
d347764
 
 
 
 
c25f802
d347764
 
c25f802
d347764
 
c25f802
f805e49
c25f802
 
 
f805e49
 
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
 
 
 
 
 
c25f802
c737803
d347764
c25f802
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""ML_task3.ipynb
Automatically generated by Colaboratory.
Original file is located at
    https://colab.research.google.com/drive/1DfK6fjkAd9RjVx3MUGfDtAOulvEenk0E?authuser=0#scrollTo=x0BqFNWue3V8
"""

import gradio as gr
import numpy as np
import torch
from datasets import load_dataset

from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor, VitsModel, VitsTokenizer

device = "cuda:0" if torch.cuda.is_available() else "cpu"

# распознавание речи
asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device)

processor = WhisperProcessor.from_pretrained(
    "openai/whisper-small")

translator_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
translator_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")


model = VitsModel.from_pretrained("facebook/mms-tts-rus")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")


def translator_mul_ru(text):

    translation  = translator_ru(translator_en(text)[0]['translation_text'])
    return translation[0]['translation_text']

def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
    return outputs["text"]

def synthesise(text):
    translated_text = translator_mul_ru(text)
    inputs = tokenizer(translated_text, return_tensors="pt")
    input_ids = inputs["input_ids"]

    with torch.no_grad():
        outputs = model(input_ids)
    speech = outputs["waveform"]
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    print(translated_text)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech[0]


title = "Speech-to-Speech Translation"
description = """
* Выбранная ASR модель - https://huggingface.co/voidful/wav2vec2-xlsr-multilingual-56
* Перевод текста на русский с помощью модели https://huggingface.co/Helsinki-NLP/opus-mt-mul-en 
* Синтез речи на русском языке с помощью модели https://huggingface.co/facebook/mms-tts-rus
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"])

demo.launch()