Spaces:
Sleeping
Sleeping
File size: 34,210 Bytes
433bcaa 77ce35a 077cd99 433bcaa 77ce35a 433bcaa 77ce35a 433bcaa 7544677 433bcaa 77ce35a 433bcaa 7544677 433bcaa 615c7af 433bcaa 615c7af 433bcaa 615c7af 433bcaa 77ce35a 433bcaa 77ce35a 433bcaa 77ce35a 433bcaa 77ce35a 433bcaa 77ce35a 433bcaa 77ce35a 433bcaa 77ce35a 433bcaa 77ce35a 433bcaa 77ce35a 433bcaa 77ce35a 433bcaa c68a8b8 433bcaa c68a8b8 433bcaa c68a8b8 433bcaa 4c2ea84 433bcaa c68a8b8 433bcaa c68a8b8 433bcaa c68a8b8 433bcaa 03d32ae 433bcaa c68a8b8 433bcaa c68a8b8 433bcaa c68a8b8 433bcaa c68a8b8 433bcaa c68a8b8 433bcaa c68a8b8 433bcaa c68a8b8 433bcaa 510f31f 433bcaa f0b5e94 c68a8b8 77ce35a 433bcaa 77ce35a 83c31db 433bcaa 77ce35a 7268c9c 77ce35a 433bcaa 77ce35a 433bcaa 77ce35a f0b5e94 77ce35a 433bcaa 77ce35a f98ad5c 77ce35a f98ad5c f0b5e94 f98ad5c f0b5e94 77ce35a f0b5e94 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 9894fac a5d883c 77ce35a a5d883c 433bcaa a5d883c 433bcaa a5d883c 77ce35a a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 77ce35a a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 433bcaa a5d883c 77ce35a a5d883c 433bcaa a5d883c 433bcaa 77ce35a a5d883c 77ce35a a5d883c 77ce35a a5d883c 77ce35a a5d883c 77ce35a a5d883c 77ce35a a5d883c 433bcaa a5d883c 433bcaa 77ce35a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
from streamlit import session_state as ss
from streamlit_pdf_viewer import pdf_viewer
import streamlit_pdf_viewer
import streamlit as st
# # Declare variable.
# if 'pdf_ref' not in ss:
# ss.pdf_ref = None
# # Access the uploaded ref via a key.
# st.file_uploader("Upload PDF file", type=('pdf'), key='pdf')
# if ss.pdf:
# ss.pdf_ref = ss.pdf # backup
# # Now you can access "pdf_ref" anywhere in your app.
# if ss.pdf_ref:
# binary_data = ss.pdf_ref.getvalue()
# pdf_viewer(input=binary_data, width=700)
# import base64
# def displayPDF(file):
# # Opening file from file path
# with open(file, "rb") as f:
# base64_pdf = base64.b64encode(f.read()).decode('utf-8')
# # Embedding PDF in HTML
# pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf"></iframe>'
# # Displaying File
# st.markdown(pdf_display, unsafe_allow_html=True)
# displayPDF("../Transformers/Bhagavad-Gita-As-It-Is.pdf")
# import streamlit as st
# import streamlit_pdf_viewer
# def displayPDF(file):
# with open(file, "rb") as f:
# pdf_bytes = f.read()
# streamlit_pdf_viewer.pdf_viewer(pdf_bytes)
# displayPDF("../Transformers/Bhagavad-Gita-As-It-Is.pdf")
# Arial Unicode.ttf
# import streamlit as st
# import fitz # PyMuPDF library
# from PIL import Image, ImageDraw, ImageFont
# import io
# import numpy as np
# def display_pdf_with_highlight(file_path, keywords):
# # Open the PDF file
# with fitz.open(file_path) as doc:
# # Create a new PDF file to hold the highlighted pages
# highlighted_pdf = fitz.open()
# # Iterate over each page in the PDF
# for page_index in range(len(doc)):
# page = doc.load_page(page_index)
# pix = page.get_pixmap(dpi=300)
# img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# # Create a drawing object and highlight the keywords
# draw = ImageDraw.Draw(img)
# font = ImageFont.truetype("Arial Unicode.ttf", 14) # Replace with your desired font
# for keyword in keywords:
# areas = page.search_for(keyword)
# for area in areas:
# bbox = area.bbox
# draw.rectangle(bbox, outline="yellow", width=3)
# # Convert the highlighted image to a NumPy array
# img_np = np.asarray(img)
# # Create a MuPDF-compatible Pixmap from the NumPy array
# muimg = fitz.Pixmap(fitz.csRGB, img_np.shape[1], img_np.shape[0])
# muimg.set_data(img_np.tobytes())
# # Create a new PDF page and insert the highlighted image
# new_page = highlighted_pdf.new_page(-1, width=muimg.width, height=muimg.height)
# new_page.insert_image(fitz.Rect(0, 0, muimg.width, muimg.height), stream=muimg)
# # Create a BytesIO object to hold the highlighted PDF data
# pdf_bytes = io.BytesIO()
# highlighted_pdf.write(pdf_bytes)
# pdf_bytes.seek(0)
# # Display the highlighted PDF in Streamlit
# st.download_button(
# label="Download Highlighted PDF",
# data=pdf_bytes.getvalue(),
# file_name="highlighted_pdf.pdf",
# mime="application/pdf",
# )
# # Example usage
# file_path = "../Transformers/Bhagavad-Gita-As-It-Is.pdf"
# keywords = ["Arjuna", "Krishna"]
# display_pdf_with_highlight(file_path, keywords)
# import pyperclip
# content = str(pyperclip.paste())
# import streamlit as st
# import fitz
# def annotate_pdf(file_path, text_to_highlight):
# # Open the PDF file
# with fitz.open(file_path) as doc:
# # Create a new PDF file to hold the annotated pages
# annotated_pdf = fitz.open()
# # Iterate over each page in the PDF
# for page_index in range(len(doc)):
# page = doc.load_page(page_index)
# # Search for the text to highlight
# areas = page.search_for(text_to_highlight)
# # Add rectangle annotations for the highlighted areas
# for area in areas:
# page.add_rect_annot(area)
# # Create a new PDF page and insert the annotated page
# new_page = annotated_pdf.new_page(-1, width=page.rect.width, height=page.rect.height)
# new_page.show_pdf_page(page.rect, doc, page_index)
# # Create a BytesIO object to hold the annotated PDF data
# pdf_bytes = annotated_pdf.write()
# # Display the annotated PDF in Streamlit
# st.download_button(
# label="Download Annotated PDF",
# data=pdf_bytes,
# file_name="annotated_pdf.pdf",
# mime="application/pdf",
# )
# # Example usage
# file_path = "../Transformers/Bhagavad-Gita-As-It-Is.pdf"
# text_to_highlight = "Arjuna"
# annotate_pdf(file_path, text_to_highlight)
# def displayPDF(file):
# # Opening file from file path
# with open(file, "rb") as f:
# base64_pdf = base64.b64encode(f.read()).decode('utf-8')
# # Embedding PDF in HTML
# pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf"></iframe>'
# # Displaying File
# st.markdown(pdf_display, unsafe_allow_html=True)
# displayPDF("../Transformers/Bhagavad-Gita-As-It-Is.pdf")
# import streamlit as st
# import fitz
# def annotate_pdf(file_path, text_to_highlight):
# # Open the PDF file
# with fitz.open(file_path) as doc:
# # Create a new PDF file to hold the annotated pages
# annotated_pdf = fitz.open()
# # Iterate over each page in the PDF
# for page_index in range(len(doc)):
# page = doc.load_page(page_index)
# # Search for the text to highlight
# areas = page.search_for(text_to_highlight)
# # Add rectangle annotations for the highlighted areas
# for area in areas:
# page.add_rect_annot(area)
# # Create a new PDF page and insert the annotated page
# new_page = annotated_pdf.new_page(-1, width=page.rect.width, height=page.rect.height)
# new_page.show_pdf_page(page.rect, doc, page_index)
# # Create a BytesIO object to hold the annotated PDF data
# pdf_bytes = annotated_pdf.write()
# streamlit_pdf_viewer.pdf_viewer(pdf_bytes)
# # Display the annotated PDF in Streamlit
# st.download_button(
# label="Download Annotated PDF",
# data=pdf_bytes,
# file_name="annotated_pdf.pdf",
# mime="application/pdf",
# )
# # Example usage
# file_path = "../Transformers/Bhagavad-Gita-As-It-Is.pdf"
# text_to_highlight = "Krishna"
# annotate_pdf(file_path, text_to_highlight)
# import streamlit as st
# import fitz
# import io
# def annotate_pdf(uploaded_file, text_to_highlight):
# try:
# # Open the PDF file from the file-like object
# doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
# # Create a new PDF file to hold the annotated pages
# annotated_pdf = fitz.open()
# # Iterate over each page in the PDF
# for page_index in range(len(doc)):
# page = doc.load_page(page_index)
# # Search for the text to highlight
# areas = page.search_for(text_to_highlight)
# # Add rectangle annotations for the highlighted areas
# for area in areas:
# page.add_rect_annot(area)
# # Create a new PDF page and insert the annotated page
# new_page = annotated_pdf.new_page(-1, width=page.rect.width, height=page.rect.height)
# new_page.show_pdf_page(page.rect, doc, page_index)
# # Create a BytesIO object to hold the annotated PDF data
# pdf_bytes = io.BytesIO(annotated_pdf.write())
# # Display the annotated PDF in Streamlit
# st.download_button(
# label="Download Annotated PDF",
# data=pdf_bytes.getvalue(),
# file_name="annotated_pdf.pdf",
# mime="application/pdf",
# )
# except Exception as e:
# st.error(f"An error occurred: {str(e)}")
# # Streamlit app
# def main():
# st.title("PDF Annotation App")
# uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
# if uploaded_file is not None:
# text_to_highlight = st.text_input("Enter text to highlight")
# if text_to_highlight:
# annotate_pdf(uploaded_file, text_to_highlight)
# if __name__ == "__main__":
# main()
# file_path = "../Transformers/Bhagavad-Gita-As-It-Is.pdf"
# text_to_highlight = "Krishna"
# annotate_pdf(file_path, text_to_highlight)
# import fitz
# import base64
# def displayPDF(file):
# # Open the PDF document
# doc = fitz.open("my_pdf.pdf")
# # Get the first page of the document
# page = doc.loadPage(4)
# # Search for the text string to highlight
# text_to_highlight = "Supreme Personality of Godhead"
# # Create a rectangle around the text to highlight
# highlight_rect = fitz.Rect(page.searchFor(text_to_highlight)[0])
# # Create a highlight annotation
# highlight_annot = fitz.Annot(page, highlight_rect, "Highlight", {"color": fitz.utils.getColor("yellow")})
# # Add the annotation to the page
# page.addAnnot(highlight_annot)
# # Save the document
# doc.save("my_pdf_highlighted.pdf")
# # Opening file from file path
# with open(file, "rb") as f:
# base64_pdf = base64.b64encode(f.read()).decode('utf-8')
# # Embedding PDF in HTML
# pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf"></iframe>'
# # Displaying File
# st.markdown(pdf_display, unsafe_allow_html=True)
# displayPDF("../Transformers/Bhagavad-Gita-As-It-Is.pdf")
import streamlit as st
# import fitz
import tempfile
# Import the PDF_ANNOT_HIGHLIGHT constant
# from fitz.PDF_ANNOT import PDF_ANNOT_HIGHLIGHT
import base64
import io
def display_highlighted_pdf(file_path, text_to_highlight):
# Open the PDF document
doc = fitz.open(file_path)
# Iterate over each page in the PDF
for page_index in range(len(doc)):
page = doc.load_page(page_index)
# Search for the text string to highlight
areas = page.search_for(text_to_highlight)
# Create a highlight annotation for each area
for area in areas:
highlight_rect = fitz.Rect(area)
highlight_annot = page.add_highlight_annot(highlight_rect) #fitz.Annot(page.parent, highlight_rect, annot_type=fitz.PDF_ANNOT_HIGHLIGHT)
highlight_annot.set_colors({"stroke": fitz.utils.getColor("yellow")})
highlight_annot.update()
# page.add_annot(highlight_annot)
# Create a BytesIO object to hold the highlighted PDF data
# Create a temporary file to save the PDF
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file_path = temp_file.name
doc.save(temp_file_path)
# Read the content of the temporary file into a BytesIO object
with open(temp_file_path, "rb") as f:
pdf_bytes = io.BytesIO(f.read())
# # Remove the temporary file
# st.unlink(temp_file_path)
# pdf_bytes = io.BytesIO()
# doc.write(pdf_bytes)
# pdf_bytes.seek(0)
# Encode the PDF data as base64
base64_pdf = base64.b64encode(pdf_bytes.getvalue()).decode('utf-8')
# Embed the PDF in an HTML iframe
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" height="1600" width="680" type="application/pdf"></iframe>'
# Display the PDF in Streamlit
st.markdown(pdf_display, unsafe_allow_html=True)
# Example usage
file_path = "Bhagavad-Gita-As-It-Is.pdf"
text_to_highlight = "Supreme Personality of Godhead"
# display_highlighted_pdf(file_path, text_to_highlight)
# import streamlit as st
# def display_pdf(pdf_path):
# # Read the PDF file
# with open(pdf_path, "rb") as file:
# pdf_bytes = file.read()
# # Encode the PDF data as base64
# base64_pdf = base64.b64encode(pdf_bytes).decode("utf-8")
# # Embed the PDF in an HTML iframe
# pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf"></iframe>'
# # Display the PDF in Streamlit
# st.markdown(pdf_display, unsafe_allow_html=True)
# # Example usage
# pdf_path = "../Transformers/Bhagavad-Gita-As-It-Is.pdf"
# display_pdf(pdf_path)
# import pymupdf
# # Open the PDF file
# doc = pymupdf.open(file_path)
# # Get the first page of the PDF
# # page = pdf_file.pa
# for page in doc: # iterate the document pages
# text_coordinates = page.search_for("Bhagavad", quads=True)
# # Highlight the text
# page.add_highlight_annot(text_coordinates)
# # Get the text of the page
# text = page.get_text()
# # Find the text to highlight
# text_to_highlight = "Bhagavad"
# # Get the coordinates of the text to highlight
# text_coordinates = page.search_for(text_to_highlight)
# Highlight the text
# page.add_highlight_annot(text_coordinates)
# Save the PDF file
# doc.save("example_highlighted.pdf")
import pymupdf
import tempfile
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from collections import Counter
from streamlit_image_zoom import image_zoom
from PIL import Image
def highlight_pdf(file_path, text_to_highlight, page_numbers):
# Create a temporary file to save the modified PDF
# temp_pdf_path = "temp_highlighted_pdf.pdf"
# Create a temporary file to save the modified PDF
# with tempfile.NamedTemporaryFile(delete=False) as temp_file:
# temp_pdf_path = temp_file.name
# Open the original PDF
doc = pymupdf.open(file_path)
pages_to_display = [doc.load_page(page_number - 1) for page_number in page_numbers]
# Tokenize the text into words
words = text_to_highlight.split()
# Remove stopwords
stop_words = set(stopwords.words("english"))
words = [word for word in words if word.lower() not in stop_words]
print(words)
# Count the frequency of each word
word_counts = Counter(words)
# Get the top N most frequent words
# top_words = [word for word, _ in word_counts.most_common(5)]
# Iterate over each page in the PDF
for page in pages_to_display:
# Highlight the specified words on the canvas
for word in words:
highlight_rect = page.search_for(word, quads=True)
# Highlight the text
# highlight_rect = pymupdf.Rect(word)
# highlight_annot = page.add_highlight_annot(highlight_rect)
# highlight_annot.set_colors({"stroke": pymupdf.utils.getColor("yellow")})
# highlight_annot.update()
page.add_highlight_annot(highlight_rect)
# Create a new document with only the specified pages
new_doc = pymupdf.open()
for page in pages_to_display:
new_doc.insert_pdf(doc, from_page=page.number, to_page=page.number)
# Save the modified PDF
# Save the document to a temporary file
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
temp_pdf_path = temp_file.name
new_doc.save(temp_pdf_path)
print(temp_pdf_path)
new_doc.save("example_highlighted.pdf")
return temp_pdf_path
# Example usage
def pdf_to_images(pdf_path, page_numbers):
doc = fitz.open(pdf_path)
images = []
for page_number in page_numbers:
page = doc.load_page(page_number - 1)
pix = page.get_pixmap()
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
buf = io.BytesIO()
img.save(buf, format="PNG")
byte_im = buf.getvalue()
images.append(byte_im)
return images
# Function to display PDF in Streamlit
def display_highlighted_pdf():
pdf_path = "Bhagavad-Gita-As-It-Is.pdf"
sources = [7,8]
response_text = "I offer my respectful obeisances unto the lotus feet of my spiritual master and unto the feet of all Vaiñëavas. I offer my respectful"
highlighted_pdf_path = highlight_pdf(file_path=file_path, text_to_highlight=response_text, page_numbers=sources)
print(highlighted_pdf_path)
# with open(highlighted_pdf_path, "rb") as file:
# pdf_bytes = file.read()
# # Use pdf_viewer to display the PDF in Streamlit
# pdf_viewer(pdf_bytes, width=700)
images = pdf_to_images(highlighted_pdf_path, sources)
for img in images:
image_zoom(img)
display_highlighted_pdf()
# import streamlit as st
# import streamlit.components.v1 as components
# path_to_html = "https://vedabase.io/en/library/bg/1/1/"
# # with open(path_to_html,'r') as f:
# # html_data = f.read()
# # # Show in webpage
# # st.header("Show an external HTML")
# # st.components.v1.html(html_data)
# try:
# with open(path_to_html, 'r') as f:
# # Your file processing code here
# html_data = f.read()
# st.header("Show an external HTML")
# st.components.v1.html(html_data)
# except FileNotFoundError:
# print("File not found. Please check the file path.")
# except Exception as e:
# print(f"An error occurred: {e}")
# import streamlit as st
# import requests
# from bs4 import BeautifulSoup
# def fetch_html(url):
# # Fetch the webpage content
# response = requests.get(url)
# if response.status_code == 200:
# return response.content
# else:
# st.error(f"Failed to fetch webpage. Status code: {response.status_code}")
# def scrape_data(html_content):
# # Parse HTML content
# soup = BeautifulSoup(html_content, "html.parser")
# # Scrape data (replace this with your specific scraping logic)
# data = soup.find_all(class_="container first-container")
# return data
# def main(url):
# st.title("Webpage Scraper")
# # User input for webpage URL
# url = st.text_input("Enter the URL of the webpage:", value=url)
# # Convert webpage to HTML and scrape data
# if st.button("Scrape Data"):
# if url:
# html_content = fetch_html(url)
# str_content = """ """
# if html_content:
# data = scrape_data(html_content)
# # st.title("HTML Page Display")
# # st.components.v1.html(html_content, height=1600, width=800)
# # Display scraped data in a new tab
# with st.expander("Scraped Data", expanded=True):
# for item in data:
# # Convert item to string and display
# str_content += str(item)
# # st.write(str(item))
# # st.title("HTML Page Display")
# # st.components.v1.html(data, height=1600, width=800)
# # st.title("HTML Page Display")
# st.components.v1.html(str_content, height=1600, width=680)
# main()
# import streamlit as st
# html_content = """
# <div class="container first-container"> <div class="row"> <div class="col-12 breadcrumb"> <a href="/en/library/">Library</a> »
# <a href="/en/library/bg/">Bhagavad-gītā As It Is</a> »
# <a href="/en/library/bg/1/">Chapter One</a>
# </div> </div> <div class="row" id="content" tabindex="-1"> <div class="col-12"> <div class="r r-title r-verse" id="bb181"> <h1>Bg. 1.1</h1> </div> <div class="wrapper-devanagari"> <h2 class="section-title none">Devanagari</h2> <div class="r r-devanagari" id="bb567886">धृतराष्ट्र उवाच<br/>धर्मक्षेत्रे कुरुक्षेत्रे समवेता युयुत्सव: ।<br/>मामका: पाण्डवाश्चैव किमकुर्वत सञ्जय ॥ १ ॥</div> </div> <div class="wrapper-verse-text"> <h2 class="section-title none">Text</h2> <div class="r r-lang-en r-verse-text" id="bb183"><em><em>dhṛtarāṣṭra uvāca</em><br/>dharma-kṣetre kuru-kṣetre<br/>samavetā yuyutsavaḥ<br/>māmakāḥ pāṇḍavāś caiva<br/>kim akurvata sañjaya</em></div> </div> <div class="wrapper-synonyms"> <h2 class="section-title">Synonyms</h2> <div class="r r-lang-en r-synonyms" id="bb184"><p><a href="/en/search/synonyms/?original=dhṛtarāṣṭraḥ"><em>dhṛtarāṣṭraḥ</em></a> <a href="/en/search/synonyms/?original=uvāca"><em>uvāca</em></a> — King Dhṛtarāṣṭra said; <a href="/en/search/synonyms/?original=dharma"><em>dharma</em></a>-<a href="/en/search/synonyms/?original=kṣetre"><em>kṣetre</em></a> — in the place of pilgrimage; <a href="/en/search/synonyms/?original=kuru"><em>kuru</em></a>-<a href="/en/search/synonyms/?original=kṣetre"><em>kṣetre</em></a> — in the place named Kurukṣetra; <a href="/en/search/synonyms/?original=samavetāḥ"><em>samavetāḥ</em></a> — assembled; <a href="/en/search/synonyms/?original=yuyutsavaḥ"><em>yuyutsavaḥ</em></a> — desiring to fight; <a href="/en/search/synonyms/?original=māmakāḥ"><em>māmakāḥ</em></a> — my party (sons); <a href="/en/search/synonyms/?original=pāṇḍavāḥ"><em>pāṇḍavāḥ</em></a> — the sons of Pāṇḍu; <a href="/en/search/synonyms/?original=ca"><em>ca</em></a> — and; <a href="/en/search/synonyms/?original=eva"><em>eva</em></a> — certainly; <a href="/en/search/synonyms/?original=kim"><em>kim</em></a> — what; <a href="/en/search/synonyms/?original=akurvata"><em>akurvata</em></a> — did they do; <a href="/en/search/synonyms/?original=sañjaya"><em>sañjaya</em></a> — O Sañjaya.</p></div> </div> <div class="wrapper-translation"> <h2 class="section-title">Translation</h2> <div class="r r-lang-en r-translation" id="bb185"><p><strong>Dhṛtarāṣṭra said: O Sañjaya, after my sons and the sons of Pāṇḍu assembled in the place of pilgrimage at Kurukṣetra, desiring to fight, what did they do?</strong></p></div> </div> <div class="wrapper-puport"> <h2 class="section-title">Purport</h2> <div class="r r-lang-en r-paragraph" id="bb186"><p><em><a href="/en/library/bg/">Bhagavad-gītā</a></em> is the widely read theistic science summarized in the <em>Gītā-māhātmya</em> (<em>Glorification of the Gītā</em>). There it says that one should read <em><a href="/en/library/bg/">Bhagavad-gītā</a></em> very scrutinizingly with the help of a person who is a devotee of Śrī Kṛṣṇa and try to understand it without personally motivated interpretations. The example of clear understanding is there in the <em><a href="/en/library/bg/">Bhagavad-gītā</a></em> itself, in the way the teaching is understood by Arjuna, who heard the <em>Gītā</em> directly from the Lord. If someone is fortunate enough to understand the <em><a href="/en/library/bg/">Bhagavad-gītā</a></em> in that line of disciplic succession, without motivated interpretation, then he surpasses all studies of Vedic wisdom, and all scriptures of the world. One will find in the <em><a href="/en/library/bg/">Bhagavad-gītā</a></em> all that is contained in other scriptures, but the reader will also find things which are not to be found elsewhere. That is the specific standard of the <em>Gītā.</em> It is the perfect theistic science because it is directly spoken by the Supreme Personality of Godhead, Lord Śrī Kṛṣṇa.</p></div> <div class="r r-lang-en r-paragraph" id="bb187"><p>The topics discussed by Dhṛtarāṣṭra and Sañjaya, as described in the <em>Mahābhārata,</em> form the basic principle for this great philosophy. It is understood that this philosophy evolved on the Battlefield of Kurukṣetra, which is a sacred place of pilgrimage from the immemorial time of the Vedic age. It was spoken by the Lord when He was present personally on this planet for the guidance of mankind.</p></div> <div class="r r-lang-en r-paragraph" id="bb188"><p>The word <em>dharma-kṣetra</em> (a place where religious rituals are performed) is significant because, on the Battlefield of Kurukṣetra, the Supreme Personality of Godhead was present on the side of Arjuna. Dhṛtarāṣṭra, the father of the Kurus, was highly doubtful about the possibility of his sons’ ultimate victory. In his doubt, he inquired from his secretary Sañjaya, “What did they do?” He was confident that both his sons and the sons of his younger brother Pāṇḍu were assembled in that Field of Kurukṣetra for a determined engagement of the war. Still, his inquiry is significant. He did not want a compromise between the cousins and brothers, and he wanted to be sure of the fate of his sons on the battlefield. Because the battle was arranged to be fought at Kurukṣetra, which is mentioned elsewhere in the <em>Vedas</em> as a place of worship – even for the denizens of heaven – Dhṛtarāṣṭra became very fearful about the influence of the holy place on the outcome of the battle. He knew very well that this would influence Arjuna and the sons of Pāṇḍu favorably, because by nature they were all virtuous. Sañjaya was a student of Vyāsa, and therefore, by the mercy of Vyāsa, Sañjaya was able to envision the Battlefield of Kurukṣetra even while he was in the room of Dhṛtarāṣṭra. And so, Dhṛtarāṣṭra asked him about the situation on the battlefield.</p></div> <div class="r r-lang-en r-paragraph" id="bb189"><p>Both the Pāṇḍavas and the sons of Dhṛtarāṣṭra belong to the same family, but Dhṛtarāṣṭra’s mind is disclosed herein. He deliberately claimed only his sons as Kurus, and he separated the sons of Pāṇḍu from the family heritage. One can thus understand the specific position of Dhṛtarāṣṭra in his relationship with his nephews, the sons of Pāṇḍu. As in the paddy field the unnecessary plants are taken out, so it is expected from the very beginning of these topics that in the religious field of Kurukṣetra, where the father of religion, Śrī Kṛṣṇa, was present, the unwanted plants like Dhṛtarāṣṭra’s son Duryodhana and others would be wiped out and the thoroughly religious persons, headed by Yudhiṣṭhira, would be established by the Lord. This is the significance of the words <em>dharma-kṣetre</em> and <em>kuru-kṣetre,</em> apart from their historical and Vedic importance.</p></div> </div> </div> </div> <div class="row d-print-none"> <div class="col-12"> <ul class="mini-pager mt-2 pb-4"> <li class="pager-prev"><a class="btn" href="/en/library/bg/1/"> <i class="fa fa-chevron-left"></i>
# Previous
# </a></li>
# <li class="pager-next"><a class="btn" href="/en/library/bg/1/2/">
# Next
# <i class="fa fa-chevron-right"></i>
# </a></li>
# </ul> </div> </div> <nav class="rich-menu" id="para-menu"> <div class="Panel" data-csrf-token="l7dMxBge1IaZDbFchwWzWmh1CBpo6pWDY9LKjwSlqmvpDKld3RfTLY85AWyycbUS" data-language="en" data-propose-category-url="/categorization/suggest-category/" data-reload-url="/en/paragraph-tool/?page_id=14054&view_slug=index_view&view_args=&next=/en/library/bg/1/1/&page_url=/en/library/bg/1/1/" id="panel"> <h1 class="pt-title">Paragraph Tools <a class="pt-close-button" href="#" onclick="event.preventDefault();_menu.close();return false;">Close <i class="fa fa-times"></i></a></h1> Please select paragraph first. </div> <div class="Panel" id="subpanel"> <p>Suggest this as category.</p> <a class="link-yes btn btn-lg btn-success px-3" href="">Yes</a> <a class="link-cancel btn btn-lg btn-success px-3" href="">Cancel</a> </div> </nav> <div class="paragraph-tool-button no-touch none"> <div class="paragraph-tool-button-nav"> <div class="paragraph-tool-button-trigger" data-target="#para-menu" id="para-menu-button"> <i class="icon fa fa-briefcase fa-2x"></i> <span class="fa-stack fa"> <i class="fa fa-circle fa-stack-1x p-counter"></i> <span class="p-counter fa-stack-1x fa-stack-text file-text fa-inverse"></span> </span> </div> </div> </div> </div>
# """
# st.title("HTML Page Display")
# st.components.v1.html(html_content, height=1600, width=800)
# import requests
# from bs4 import BeautifulSoup
# # URL of the webpage
# baseurl = "https://vedabase.io/en/library/bg/"
# # Fetch the webpage content
# response = requests.get(baseurl)
# if response.status_code == 200:
# html_content = response.content
# # Parse HTML content
# soup = BeautifulSoup(html_content, "html.parser")
# # Find all direct child div elements with class="r-chapter"
# direct_child_div_elements = soup.select("div.col-12 > div.r-chapter")
# # List to store the extracted text
# output = []
# # Iterate over each direct child div element
# for div in direct_child_div_elements:
# # Find the <a> tag within the div
# a_tag = div.find("a")
# if a_tag:
# # Extract the text from the <a> tag and append it to the output list
# output.append(a_tag.text.strip())
# # Print the output list
# # print(output)
# # print(len(output))
# ### Link to all chapters
# import re
# # Sample text
# chapter = output[4]
# text_to_number = {
# "One": "1",
# "Two": "2",
# "Three": "3",
# "Four": "4",
# "Five": "5",
# "Six": "6",
# "Seven": "7",
# "Eight": "8",
# "Nine": "9",
# "Ten": "10",
# # Add more numbers if needed
# }
# # Split the text by spaces
# words = chapter.split()
# # Find the text representing the number
# number_text = words[1].strip(":") # Assuming the number text is the second word
# # Extract the numeric part
# chapter_number = text_to_number[number_text]
# # Print the chapter number
# # print(chapter_number)
# url = baseurl + chapter_number
# # print(url)
# ### all Texts in each chapter
# response = requests.get(url)
# if response.status_code == 200:
# html_content = response.content
# # Parse HTML content
# text = BeautifulSoup(html_content, "html.parser")
# # print(text)
# # Find all direct child div elements with class="r-chapter"
# direct_child_div_elements = text.select("div.col-12 > dl.r.r-verse")
# # print(direct_child_div_elements)
# # List to store the extracted text
# text_number = []
# # Iterate over each direct child div element
# for div in direct_child_div_elements:
# # Find the <a> tag within the div
# a_tag = div.find("a")
# if a_tag:
# # Extract the text from the <a> tag and append it to the output list
# text_number.append(a_tag.text.strip())
# # Print the output list
# # print(text_number)
# # print(len(text_number))
# ### link to each Text in each chapter
# text_page = text_number[0]
# # Split the text by spaces
# words = text_page.split()
# # Find the text representing the number
# text_number = words[1].strip(":") # Assuming the number text is the second word
# # print(f"chapter_number - {chapter_number} : text_number - {text_number}")
# texturl = baseurl + chapter_number + "/" + text_number
# # print(texturl)
# main(url=texturl)
# st.title("Display HTML File in Streamlit")
# # Path to the HTML file
# html_file_path = "../Transformers/Bg. 1.1.html"
# try:
# # Read the HTML file
# with open(html_file_path, "r", encoding="utf-8") as file:
# html_content = file.read()
# # Display the HTML content using the 'st.components.v1.html' component
# expanded = st.checkbox("Expand HTML page")
# if expanded:
# st.components.v1.html(html_content, height=1600, width=680)
# else:
# st.components.v1.html(html_content, height=600)
# except FileNotFoundError:
# st.error(f"HTML file '{html_file_path}' not found!")
# import streamlit as st
# st.title("Streamlit Tabs Example")
# # Add tabs to the sidebar
# tabs = st.sidebar.radio("Navigation", ["Home", "About", "Settings"])
# # Display different content based on the selected tab
# if tabs == "Home":
# st.header("Home Page")
# st.write("Welcome to the Home page!")
# elif tabs == "About":
# st.header("About Page")
# st.write("This is the About page.")
# elif tabs == "Settings":
# st.header("Settings Page")
# st.write("Here you can configure your settings.")
# st.title("Netflix-like Grid Display")
# import streamlit as st
# import os
# import streamlit.components.v1 as components
# # Define movie data
# movies = [
# {"title": "Movie 1", "poster_path": "../Transformers/Bg. 1.1.html"},
# {"title": "Movie 2", "poster_url": "https://via.placeholder.com/150"},
# {"title": "Movie 3", "poster_url": "https://via.placeholder.com/150"},
# {"title": "Movie 4", "poster_url": "https://via.placeholder.com/150"},
# {"title": "Movie 5", "poster_url": "https://via.placeholder.com/150"},
# {"title": "Movie 6", "poster_url": "https://via.placeholder.com/150"},
# {"title": "Movie 7", "poster_url": "https://via.placeholder.com/150"},
# {"title": "Movie 8", "poster_url": "https://via.placeholder.com/150"},
# ]
# Display movies in a grid
# num_columns = 4
# col_count = 0
# cols = st.columns(num_columns)
# expanded = st.checkbox("Expand HTML page")
# for movie in movies:
# with cols[col_count % num_columns]:
# st.markdown(f"<h2>{movie['title']}</h2>", unsafe_allow_html=True)
# st.write(f"Placeholder for {movie['title']}")
# if 'poster_path' in movie:
# # Convert local file path to URL
# poster_url = f"file://{os.path.abspath(movie['poster_path'])}"
# print(poster_url)
# # Display the HTML page using IFrame
# if expanded:
# components.iframe(poster_url, width=800, height=600)
# else:
# components.iframe(poster_url,width=200)
# else:
# # Display placeholder image
# st.image(movie["poster_url"], width=200)
# col_count += 1
|