Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from torch.hub import load_state_dict_from_url | |
from typing import Union, List, Dict, Any, cast | |
__all__ = ['get_vgg'] | |
model_urls = { | |
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', | |
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth', | |
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', | |
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', | |
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth', | |
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth', | |
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth', | |
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth', | |
} | |
class VGG(nn.Module): | |
def __init__( | |
self, | |
num_classes, | |
out_keys, | |
output_make_layers, | |
init_weights: bool = True, | |
**kwargs | |
) -> None: | |
super(VGG, self).__init__() | |
self.stage_id = output_make_layers[0] | |
self.features = output_make_layers[1] | |
self.num_classes = num_classes | |
self.out_keys = out_keys | |
if num_classes is not None: | |
self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) | |
self.classifier = nn.Sequential( | |
nn.Linear(512 * 7 * 7, 4096), | |
nn.ReLU(True), | |
nn.Dropout(), | |
nn.Linear(4096, 4096), | |
nn.ReLU(True), | |
nn.Dropout(), | |
nn.Linear(4096, num_classes), | |
) | |
if init_weights: | |
self._initialize_weights() | |
def forward(self, x: torch.Tensor): | |
out_blocks = dict() | |
stage = 0 | |
out_blocks['block%d' % stage] = x | |
for idx, op in enumerate(self.features): | |
if idx in self.stage_id: | |
stage += 1 | |
x = op(x) | |
out_blocks['block%d' % stage] = x | |
continue | |
x = op(x) | |
if self.num_classes is not None: | |
x = self.avgpool(x) | |
x = torch.flatten(x, 1) | |
x = self.classifier(x) | |
if self.out_keys is not None: | |
out_blocks = {key: out_blocks[key] for key in self.out_keys} | |
return x, out_blocks | |
def _initialize_weights(self) -> None: | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, 0, 0.01) | |
nn.init.constant_(m.bias, 0) | |
def make_layers(in_channels, out_keys, cfg: List[Union[str, int]], batch_norm: bool = False): | |
layer_list = [] | |
idx = 0 | |
stage_ids = [] | |
for v in cfg: | |
if isinstance(v, int) and v in [1, 2, 3, 4, 5]: | |
if v > int(out_keys[-1].replace('block', '')): | |
break | |
continue | |
if v == 'M': | |
layer_list += [nn.MaxPool2d(kernel_size=2, stride=2)] | |
stage_ids += [idx] | |
idx += 1 | |
else: | |
v = cast(int, v) | |
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) | |
if batch_norm: | |
layer_list += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] | |
idx += 3 | |
else: | |
layer_list += [conv2d, nn.ReLU(inplace=True)] | |
idx += 2 | |
in_channels = v | |
return stage_ids, nn.Sequential(*layer_list) | |
cfgs: Dict[str, List[Union[str, int]]] = { | |
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], | |
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], | |
'D': [1, 64, 64, 'M', 2, 128, 128, 'M', 3, 256, 256, 256, 'M', 4, 512, 512, 512, 'M', 5, 512, 512, 512, 'M'], | |
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], | |
} | |
def _vgg(in_channels, num_classes, out_keys, arch: str, cfg: str, batch_norm: bool, pretrained: bool, progress: bool, **kwargs: Any) -> VGG: | |
if pretrained: | |
kwargs['init_weights'] = False | |
stage_id, ops = make_layers(in_channels, out_keys, cfgs[cfg], batch_norm=batch_norm) | |
model = VGG(num_classes, out_keys, (stage_id, ops), **kwargs) | |
if pretrained: | |
state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) | |
if in_channels != 3: | |
keys = state_dict.keys() | |
keys = [x for x in keys if 'features.0.' in x] | |
for key in keys: | |
del state_dict[key] | |
if num_classes != 1000: | |
keys = state_dict.keys() | |
keys = [x for x in keys if 'classifier' in x] | |
for key in keys: | |
del state_dict[key] | |
if 'block5' not in out_keys: | |
keys = list(state_dict.keys()) | |
for key in keys: | |
key_layer_id = int(key.split('.')[1]) | |
if key_layer_id >= stage_id[-1]: | |
del state_dict[key] | |
model.load_state_dict(state_dict) | |
return model | |
def vgg11(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: | |
r"""VGG 11-layer model (configuration "A") from | |
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs) | |
def vgg11_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: | |
r"""VGG 11-layer model (configuration "A") with batch normalization | |
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs) | |
def vgg13(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: | |
r"""VGG 13-layer model (configuration "B") | |
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs) | |
def vgg13_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: | |
r"""VGG 13-layer model (configuration "B") with batch normalization | |
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs) | |
def vgg16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: | |
r"""VGG 16-layer model (configuration "D") | |
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs) | |
def vgg16_bn(in_channels, num_classes, out_keys, pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: | |
r"""VGG 16-layer model (configuration "D") with batch normalization | |
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _vgg(in_channels, num_classes, out_keys,'vgg16_bn', 'D', True, pretrained, progress, **kwargs) | |
def vgg19(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: | |
r"""VGG 19-layer model (configuration "E") | |
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs) | |
def vgg19_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: | |
r"""VGG 19-layer model (configuration 'E') with batch normalization | |
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _vgg('vgg19_bn', 'E', True, pretrained, progress, **kwargs) | |
def get_vgg(name='vgg16_bn', pretrained=True, progress=True, num_classes=None, out_keys=None, in_channels=3, **kwargs): | |
if pretrained and num_classes != 1000: | |
print('warning: num_class is not equal to 1000, which will cause some parameters to fail to load!') | |
if pretrained and in_channels != 3: | |
print('warning: in_channels is not equal to 3, which will cause some parameters to fail to load!') | |
if name == 'vgg16_bn': | |
return vgg16_bn(in_channels=in_channels, num_classes=num_classes, | |
out_keys=out_keys, pretrained=pretrained, progress=progress, **kwargs) | |
elif name == 'resnet50': | |
return _resnet50(name=name, pretrained=pretrained, progress=progress, | |
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) | |
elif name == 'resnet101': | |
return _resnet101(name=name, pretrained=pretrained, progress=progress, | |
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) | |
elif name == 'resnet152': | |
return _resnet152(name=name, pretrained=pretrained, progress=progress, | |
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) | |
else: | |
raise NotImplementedError(r'''{0} is not an available values. \ | |
Please choose one of the available values in | |
[resnet18, reset50, resnet101, resnet152]'''.format(name)) | |
if __name__ == '__main__': | |
model = get_vgg('vgg16_bn', pretrained=True, num_classes=None, in_channels=4, out_keys=['block3']) | |
x = torch.rand([2, 3, 512, 512]) | |
x = model(x) | |
torch.save(model.state_dict(), '../../vgg16bns4.pth') | |