File size: 4,732 Bytes
c141e5a 57fb01c c141e5a 57fb01c 16065eb d3e8302 16065eb d3e8302 e892652 1a90a70 e892652 3945e8f b4dacd4 08bb98f 136c7a1 16065eb 8ddcc27 57fb01c ca87bc9 3f24f4c ca87bc9 c141e5a d3e8302 c141e5a d3e8302 c141e5a 57fb01c c141e5a 57fb01c 3aa7c64 c141e5a 3f24f4c c141e5a 5e4cf3d c141e5a 57fb01c c141e5a 57fb01c 3aa7c64 c141e5a 9c27a5b 57fb01c c141e5a 9c27a5b c141e5a 57fb01c c141e5a 57fb01c c141e5a e3612e6 ca87bc9 e3612e6 332fc39 c141e5a 332fc39 57fb01c c141e5a ca87bc9 c141e5a 57fb01c c141e5a 57fb01c 9c27a5b c141e5a 9c27a5b c141e5a 57fb01c 9c27a5b c141e5a 166ae06 57fb01c c141e5a 57fb01c c141e5a 57fb01c c141e5a 08bb98f c141e5a 57fb01c c141e5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import torch
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MODEL_LIST = ["LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = MODEL_LIST[0]
DESCRIPTION = """\
# <center> EXAONE 3.5: Series of Large Language Models for Real-world Use Cases </center>
##### We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills.
<center>This is an official demo of <a href=https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct>LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct</a>, fine-tuned for instruction following.</center>
<center>π For more details, please check <a href=https://www.lgresearch.ai/blog/view?seq=507>our blog</a> or <a href=https://arxiv.org/abs/2412.04862>technical report</a></center>
#### <center> EXAONE-3.5-2.4B-Instruct and EXAONE-3.5-32B-Instruct Demo Coming Soon.. </center>
"""
MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
model.eval()
@spaces.GPU()
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
) -> Iterator[str]:
messages = [{"role":"system","content": system_prompt}]
print(f'message: {message}')
print(f'chat_history: {chat_history}')
for user, assistant in chat_history:
messages.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
messages.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=False if top_k == 1 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=1.0,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
BOT_AVATAR = "EXAONE_logo.png"
chatbot = gr.Chatbot(
label="EXAONE-3.5-7.8B-Instruct",
avatar_images=[None, BOT_AVATAR],
layout="bubble",
bubble_full_width=False
)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=chatbot,
additional_inputs=[
gr.Textbox(
value="You are EXAONE model from LG AI Research, a helpful assistant.",
label="System Prompt",
render=False,
),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.7,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=1,
),
],
stop_btn=None,
examples=[
["Explain who you are"],
["λμ μμμ λ§ν΄λ΄"],
],
cache_examples=False,
)
with gr.Blocks(css="style.css", fill_height=True) as demo:
gr.Markdown("""<p align="center"><img src="https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct-Demo/resolve/main/EXAONE_Symbol%2BBI_3d.png" style="margin-right: 20px; height: 60px"/><p>""")
gr.Markdown(DESCRIPTION)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch() |