JiantaoLin
new
2fe3da0
raw
history blame
6.27 kB
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import math
import torch
NORMAL_THRESHOLD = 0.1
################################################################################
# Vector utility functions
################################################################################
def _dot(x, y):
return torch.sum(x*y, -1, keepdim=True)
def _reflect(x, n):
return 2*_dot(x, n)*n - x
def _safe_normalize(x):
return torch.nn.functional.normalize(x, dim = -1)
def _bend_normal(view_vec, smooth_nrm, geom_nrm, two_sided_shading):
# Swap normal direction for backfacing surfaces
if two_sided_shading:
smooth_nrm = torch.where(_dot(geom_nrm, view_vec) > 0, smooth_nrm, -smooth_nrm)
geom_nrm = torch.where(_dot(geom_nrm, view_vec) > 0, geom_nrm, -geom_nrm)
t = torch.clamp(_dot(view_vec, smooth_nrm) / NORMAL_THRESHOLD, min=0, max=1)
return torch.lerp(geom_nrm, smooth_nrm, t)
def _perturb_normal(perturbed_nrm, smooth_nrm, smooth_tng, opengl):
smooth_bitang = _safe_normalize(torch.cross(smooth_tng, smooth_nrm))
if opengl:
shading_nrm = smooth_tng * perturbed_nrm[..., 0:1] - smooth_bitang * perturbed_nrm[..., 1:2] + smooth_nrm * torch.clamp(perturbed_nrm[..., 2:3], min=0.0)
else:
shading_nrm = smooth_tng * perturbed_nrm[..., 0:1] + smooth_bitang * perturbed_nrm[..., 1:2] + smooth_nrm * torch.clamp(perturbed_nrm[..., 2:3], min=0.0)
return _safe_normalize(shading_nrm)
def bsdf_prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl):
smooth_nrm = _safe_normalize(smooth_nrm)
smooth_tng = _safe_normalize(smooth_tng)
view_vec = _safe_normalize(view_pos - pos)
shading_nrm = _perturb_normal(perturbed_nrm, smooth_nrm, smooth_tng, opengl)
return _bend_normal(view_vec, shading_nrm, geom_nrm, two_sided_shading)
################################################################################
# Simple lambertian diffuse BSDF
################################################################################
def bsdf_lambert(nrm, wi):
return torch.clamp(_dot(nrm, wi), min=0.0) / math.pi
################################################################################
# Frostbite diffuse
################################################################################
def bsdf_frostbite(nrm, wi, wo, linearRoughness):
wiDotN = _dot(wi, nrm)
woDotN = _dot(wo, nrm)
h = _safe_normalize(wo + wi)
wiDotH = _dot(wi, h)
energyBias = 0.5 * linearRoughness
energyFactor = 1.0 - (0.51 / 1.51) * linearRoughness
f90 = energyBias + 2.0 * wiDotH * wiDotH * linearRoughness
f0 = 1.0
wiScatter = bsdf_fresnel_shlick(f0, f90, wiDotN)
woScatter = bsdf_fresnel_shlick(f0, f90, woDotN)
res = wiScatter * woScatter * energyFactor
return torch.where((wiDotN > 0.0) & (woDotN > 0.0), res, torch.zeros_like(res))
################################################################################
# Phong specular, loosely based on mitsuba implementation
################################################################################
def bsdf_phong(nrm, wo, wi, N):
dp_r = torch.clamp(_dot(_reflect(wo, nrm), wi), min=0.0, max=1.0)
dp_l = torch.clamp(_dot(nrm, wi), min=0.0, max=1.0)
return (dp_r ** N) * dp_l * (N + 2) / (2 * math.pi)
################################################################################
# PBR's implementation of GGX specular
################################################################################
specular_epsilon = 1e-4
def bsdf_fresnel_shlick(f0, f90, cosTheta):
_cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon)
return f0 + (f90 - f0) * (1.0 - _cosTheta) ** 5.0
def bsdf_ndf_ggx(alphaSqr, cosTheta):
_cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon)
d = (_cosTheta * alphaSqr - _cosTheta) * _cosTheta + 1
return alphaSqr / (d * d * math.pi)
def bsdf_lambda_ggx(alphaSqr, cosTheta):
_cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon)
cosThetaSqr = _cosTheta * _cosTheta
tanThetaSqr = (1.0 - cosThetaSqr) / cosThetaSqr
res = 0.5 * (torch.sqrt(1 + alphaSqr * tanThetaSqr) - 1.0)
return res
def bsdf_masking_smith_ggx_correlated(alphaSqr, cosThetaI, cosThetaO):
lambdaI = bsdf_lambda_ggx(alphaSqr, cosThetaI)
lambdaO = bsdf_lambda_ggx(alphaSqr, cosThetaO)
return 1 / (1 + lambdaI + lambdaO)
def bsdf_pbr_specular(col, nrm, wo, wi, alpha, min_roughness=0.08):
_alpha = torch.clamp(alpha, min=min_roughness*min_roughness, max=1.0)
alphaSqr = _alpha * _alpha
h = _safe_normalize(wo + wi)
woDotN = _dot(wo, nrm)
wiDotN = _dot(wi, nrm)
woDotH = _dot(wo, h)
nDotH = _dot(nrm, h)
D = bsdf_ndf_ggx(alphaSqr, nDotH)
G = bsdf_masking_smith_ggx_correlated(alphaSqr, woDotN, wiDotN)
F = bsdf_fresnel_shlick(col, 1, woDotH)
w = F * D * G * 0.25 / torch.clamp(woDotN, min=specular_epsilon)
frontfacing = (woDotN > specular_epsilon) & (wiDotN > specular_epsilon)
return torch.where(frontfacing, w, torch.zeros_like(w))
def bsdf_pbr(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF):
wo = _safe_normalize(view_pos - pos)
wi = _safe_normalize(light_pos - pos)
spec_str = arm[..., 0:1] # x component
roughness = arm[..., 1:2] # y component
metallic = arm[..., 2:3] # z component
ks = (0.04 * (1.0 - metallic) + kd * metallic) * (1 - spec_str)
kd = kd * (1.0 - metallic)
if BSDF == 0:
diffuse = kd * bsdf_lambert(nrm, wi)
else:
diffuse = kd * bsdf_frostbite(nrm, wi, wo, roughness)
specular = bsdf_pbr_specular(ks, nrm, wo, wi, roughness*roughness, min_roughness=min_roughness)
return diffuse + specular