Spaces:
Sleeping
Sleeping
import os | |
import errno | |
import numpy as np | |
from PIL import Image | |
import warnings | |
from ext.davis2017.davis import DAVIS | |
def _pascal_color_map(N=256, normalized=False): | |
""" | |
Python implementation of the color map function for the PASCAL VOC data set. | |
Official Matlab version can be found in the PASCAL VOC devkit | |
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit | |
""" | |
def bitget(byteval, idx): | |
return (byteval & (1 << idx)) != 0 | |
dtype = 'float32' if normalized else 'uint8' | |
cmap = np.zeros((N, 3), dtype=dtype) | |
for i in range(N): | |
r = g = b = 0 | |
c = i | |
for j in range(8): | |
r = r | (bitget(c, 0) << 7 - j) | |
g = g | (bitget(c, 1) << 7 - j) | |
b = b | (bitget(c, 2) << 7 - j) | |
c = c >> 3 | |
cmap[i] = np.array([r, g, b]) | |
cmap = cmap / 255 if normalized else cmap | |
return cmap | |
def overlay_semantic_mask(im, ann, alpha=0.5, colors=None, contour_thickness=None): | |
im, ann = np.asarray(im, dtype=np.uint8), np.asarray(ann, dtype=np.int) | |
if im.shape[:-1] != ann.shape: | |
raise ValueError('First two dimensions of `im` and `ann` must match') | |
if im.shape[-1] != 3: | |
raise ValueError('im must have three channels at the 3 dimension') | |
colors = colors or _pascal_color_map() | |
colors = np.asarray(colors, dtype=np.uint8) | |
mask = colors[ann] | |
fg = im * alpha + (1 - alpha) * mask | |
img = im.copy() | |
img[ann > 0] = fg[ann > 0] | |
if contour_thickness: # pragma: no cover | |
import cv2 | |
for obj_id in np.unique(ann[ann > 0]): | |
contours = cv2.findContours((ann == obj_id).astype( | |
np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:] | |
cv2.drawContours(img, contours[0], -1, colors[obj_id].tolist(), | |
contour_thickness) | |
return img | |
def generate_obj_proposals(davis_root, subset, num_proposals, save_path): | |
dataset = DAVIS(davis_root, subset=subset, codalab=True) | |
for seq in dataset.get_sequences(): | |
save_dir = os.path.join(save_path, seq) | |
if os.path.exists(save_dir): | |
continue | |
all_gt_masks, all_masks_id = dataset.get_all_masks(seq, True) | |
img_size = all_gt_masks.shape[2:] | |
num_rows = int(np.ceil(np.sqrt(num_proposals))) | |
proposals = np.zeros((num_proposals, len(all_masks_id), *img_size)) | |
height_slices = np.floor(np.arange(0, img_size[0] + 1, img_size[0]/num_rows)).astype(np.uint).tolist() | |
width_slices = np.floor(np.arange(0, img_size[1] + 1, img_size[1]/num_rows)).astype(np.uint).tolist() | |
ii = 0 | |
prev_h, prev_w = 0, 0 | |
for h in height_slices[1:]: | |
for w in width_slices[1:]: | |
proposals[ii, :, prev_h:h, prev_w:w] = 1 | |
prev_w = w | |
ii += 1 | |
if ii == num_proposals: | |
break | |
prev_h, prev_w = h, 0 | |
if ii == num_proposals: | |
break | |
os.makedirs(save_dir, exist_ok=True) | |
for i, mask_id in enumerate(all_masks_id): | |
mask = np.sum(proposals[:, i, ...] * np.arange(1, proposals.shape[0] + 1)[:, None, None], axis=0) | |
save_mask(mask, os.path.join(save_dir, f'{mask_id}.png')) | |
def generate_random_permutation_gt_obj_proposals(davis_root, subset, save_path): | |
dataset = DAVIS(davis_root, subset=subset, codalab=True) | |
for seq in dataset.get_sequences(): | |
gt_masks, all_masks_id = dataset.get_all_masks(seq, True) | |
obj_swap = np.random.permutation(np.arange(gt_masks.shape[0])) | |
gt_masks = gt_masks[obj_swap, ...] | |
save_dir = os.path.join(save_path, seq) | |
os.makedirs(save_dir, exist_ok=True) | |
for i, mask_id in enumerate(all_masks_id): | |
mask = np.sum(gt_masks[:, i, ...] * np.arange(1, gt_masks.shape[0] + 1)[:, None, None], axis=0) | |
save_mask(mask, os.path.join(save_dir, f'{mask_id}.png')) | |
def color_map(N=256, normalized=False): | |
def bitget(byteval, idx): | |
return ((byteval & (1 << idx)) != 0) | |
dtype = 'float32' if normalized else 'uint8' | |
cmap = np.zeros((N, 3), dtype=dtype) | |
for i in range(N): | |
r = g = b = 0 | |
c = i | |
for j in range(8): | |
r = r | (bitget(c, 0) << 7-j) | |
g = g | (bitget(c, 1) << 7-j) | |
b = b | (bitget(c, 2) << 7-j) | |
c = c >> 3 | |
cmap[i] = np.array([r, g, b]) | |
cmap = cmap/255 if normalized else cmap | |
return cmap | |
def save_mask(mask, img_path): | |
if np.max(mask) > 255: | |
raise ValueError('Maximum id pixel value is 255') | |
mask_img = Image.fromarray(mask.astype(np.uint8)) | |
mask_img.putpalette(color_map().flatten().tolist()) | |
mask_img.save(img_path) | |
def db_statistics(per_frame_values): | |
""" Compute mean,recall and decay from per-frame evaluation. | |
Arguments: | |
per_frame_values (ndarray): per-frame evaluation | |
Returns: | |
M,O,D (float,float,float): | |
return evaluation statistics: mean,recall,decay. | |
""" | |
# strip off nan values | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore", category=RuntimeWarning) | |
M = np.nanmean(per_frame_values) | |
O = np.nanmean(per_frame_values > 0.5) | |
N_bins = 4 | |
ids = np.round(np.linspace(1, len(per_frame_values), N_bins + 1) + 1e-10) - 1 | |
ids = ids.astype(np.uint8) | |
D_bins = [per_frame_values[ids[i]:ids[i + 1] + 1] for i in range(0, 4)] | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore", category=RuntimeWarning) | |
D = np.nanmean(D_bins[0]) - np.nanmean(D_bins[3]) | |
return M, O, D | |
def list_files(dir, extension=".png"): | |
return [os.path.splitext(file_)[0] for file_ in os.listdir(dir) if file_.endswith(extension)] | |
def force_symlink(file1, file2): | |
try: | |
os.symlink(file1, file2) | |
except OSError as e: | |
if e.errno == errno.EEXIST: | |
os.remove(file2) | |
os.symlink(file1, file2) | |