|
from typing import Optional, Sequence, Generator |
|
|
|
from llama_cpp import Llama, LogitsProcessorList, LlamaGrammar, llama_cpp, npt, np, StoppingCriteriaList |
|
from ctypes import POINTER |
|
|
|
from KMP_list import kmp_search, compute_lps_array |
|
|
|
|
|
def is_UTF8_incomplete(all_text): |
|
multibyte_fix = 0 |
|
if len(all_text) < 3: |
|
all_text = b'000' + all_text |
|
for k, char in enumerate(all_text[-3:]): |
|
k = 3 - k |
|
for num, pattern in [(2, 192), (3, 224), (4, 240)]: |
|
|
|
if num > k and pattern & char == pattern: |
|
multibyte_fix = num - k |
|
return multibyte_fix |
|
|
|
|
|
def get_complete_UTF8(all_text): |
|
multibyte_fix = is_UTF8_incomplete(all_text) |
|
if multibyte_fix > 0: |
|
multibyte_fix = multibyte_fix - 3 |
|
return all_text[:multibyte_fix].decode("utf-8") |
|
else: |
|
return all_text.decode("utf-8") |
|
|
|
|
|
class StreamingLLM(Llama): |
|
def __init__(self, model_path: str, **kwargs): |
|
super().__init__(model_path, **kwargs) |
|
self.venv = [0] |
|
|
|
def str_detokenize(self, tokens) -> str: |
|
return get_complete_UTF8(self.detokenize(tokens)) |
|
|
|
def kv_cache_seq_trim(self): |
|
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1) |
|
|
|
def venv_create(self): |
|
self.venv.append(0) |
|
return len(self.venv) - 1 |
|
|
|
def venv_disband(self): |
|
if len(self.venv) <= 1: |
|
return 0 |
|
tmp = self.venv.pop() |
|
self.venv[-1] += tmp |
|
return len(self.venv) - 1 |
|
|
|
def venv_remove(self, venv_idx=None): |
|
if venv_idx is None: |
|
venv_idx = len(self.venv) - 1 |
|
if venv_idx <= 0 or venv_idx >= len(self.venv): |
|
return len(self.venv) - 1 |
|
if venv_idx == len(self.venv) - 1: |
|
|
|
self.n_tokens -= min(self.venv.pop(), self.n_tokens) |
|
self.kv_cache_seq_trim() |
|
else: |
|
|
|
n_keep = self.n_tokens - sum(self.venv[i] for i in range(venv_idx, len(self.venv))) |
|
n_discard = self.venv.pop(venv_idx) |
|
self.kv_cache_seq_ltrim(n_keep, n_discard) |
|
return len(self.venv) - 1 |
|
|
|
def venv_pop_token(self): |
|
self.n_tokens -= 1 |
|
self.venv[-1] -= 1 |
|
self.kv_cache_seq_trim() |
|
|
|
def kv_cache_seq_ltrim(self, n_keep, n_discard=256, n_past=-1, im_start=None): |
|
if n_past < 0: |
|
n_past = self.n_tokens |
|
if im_start is not None: |
|
lps = compute_lps_array(im_start) |
|
_idx = kmp_search(self.input_ids, im_start, n_keep + n_discard, n_past, lps) |
|
if _idx >= n_keep: |
|
n_discard = _idx - n_keep |
|
else: |
|
_idx = kmp_search(self.input_ids, im_start, n_keep, n_past, lps) |
|
if _idx >= n_keep: |
|
n_keep = _idx + len(im_start) |
|
self._ctx.kv_cache_seq_rm(-1, n_keep, n_keep + n_discard) |
|
self._ctx.kv_cache_seq_shift(0, n_keep + n_discard, n_past, -n_discard) |
|
self.input_ids[n_keep:n_past - n_discard] = self.input_ids[n_keep + n_discard:n_past] |
|
self.n_tokens = n_past - n_discard |
|
|
|
def eval_t(self, tokens, n_keep=4, n_discard=256, im_start=None): |
|
if self._n_ctx < self.n_tokens + len(tokens): |
|
tmp_n_discard = max(n_discard, self.n_tokens + len(tokens) - self._n_ctx) |
|
self.kv_cache_seq_ltrim(n_keep, tmp_n_discard, im_start=im_start) |
|
for i in range(0, len(tokens), self.n_batch): |
|
batch = tokens[i: i + self.n_batch] |
|
n_past = self.n_tokens |
|
n_tokens = len(batch) |
|
self._batch.set_batch( |
|
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all |
|
) |
|
self._ctx.decode(self._batch) |
|
|
|
self.input_ids[n_past: n_past + n_tokens] = batch |
|
|
|
rows = n_tokens |
|
cols = self._n_vocab |
|
offset = ( |
|
0 if self.context_params.logits_all else n_tokens - 1 |
|
) |
|
self.scores[n_past + offset: n_past + n_tokens, :].reshape(-1)[ |
|
: |
|
] = self._ctx.get_logits()[offset * cols: rows * cols] |
|
|
|
self.n_tokens += n_tokens |
|
self.venv[-1] += n_tokens |
|
return self.n_tokens |
|
|
|
def sample_t( |
|
self, |
|
top_k: int = 40, |
|
top_p: float = 0.95, |
|
min_p: float = 0.05, |
|
typical_p: float = 1.0, |
|
temp: float = 0.80, |
|
repeat_penalty: float = 1.1, |
|
repeat_last_n: int = 64, |
|
frequency_penalty: float = 0.0, |
|
presence_penalty: float = 0.0, |
|
tfs_z: float = 1.0, |
|
mirostat_mode: int = 0, |
|
mirostat_eta: float = 0.1, |
|
mirostat_tau: float = 5.0, |
|
penalize_nl: bool = True, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
grammar: Optional[LlamaGrammar] = None, |
|
): |
|
last_n_tokens_data = [llama_cpp.llama_token(0)] * max( |
|
0, repeat_last_n - self.n_tokens |
|
) + self._input_ids[-repeat_last_n:].tolist() |
|
last_n_tokens_size = len(last_n_tokens_data) |
|
n_vocab = self._n_vocab |
|
n_ctx = self._n_ctx |
|
top_k = n_vocab if top_k <= 0 else top_k |
|
last_n_tokens_size = n_ctx if last_n_tokens_size < 0 else last_n_tokens_size |
|
last_n_tokens_data_c = (llama_cpp.llama_token * last_n_tokens_size)( |
|
*last_n_tokens_data |
|
) |
|
logits: npt.NDArray[np.single] = self.scores[self.n_tokens - 1: self.n_tokens, :].ravel() |
|
|
|
if logits_processor is not None: |
|
logits[:] = logits_processor(self._input_ids, logits) |
|
|
|
self._candidates.copy_logits(logits) |
|
self._ctx.sample_repetition_penalties( |
|
candidates=self._candidates, |
|
last_tokens_data=last_n_tokens_data_c, |
|
penalty_last_n=last_n_tokens_size, |
|
penalty_repeat=repeat_penalty, |
|
penalty_freq=frequency_penalty, |
|
penalty_present=presence_penalty, |
|
) |
|
if not penalize_nl: |
|
nl_logit = logits[self._token_nl] |
|
self._candidates.candidates.data[self._token_nl].logit = llama_cpp.c_float( |
|
nl_logit |
|
) |
|
|
|
if grammar is not None: |
|
self._ctx.sample_grammar( |
|
candidates=self._candidates, |
|
grammar=grammar, |
|
) |
|
|
|
if temp < 0.0: |
|
self._ctx.sample_softmax(candidates=self._candidates) |
|
id_ = self._candidates.candidates.data[0].id |
|
elif temp == 0.0: |
|
id_ = self._ctx.sample_token_greedy(candidates=self._candidates) |
|
elif mirostat_mode == 1: |
|
self._ctx.sample_temp(candidates=self._candidates, temp=temp) |
|
id_ = self._ctx.sample_token_mirostat( |
|
candidates=self._candidates, |
|
tau=mirostat_tau, |
|
eta=mirostat_eta, |
|
mu=2.0 * mirostat_tau, |
|
m=100, |
|
) |
|
elif mirostat_mode == 2: |
|
self._ctx.sample_temp(candidates=self._candidates, temp=temp) |
|
id_ = self._ctx.sample_token_mirostat_v2( |
|
candidates=self._candidates, |
|
tau=mirostat_tau, |
|
eta=mirostat_eta, |
|
mu=2.0 * mirostat_tau, |
|
) |
|
else: |
|
self._ctx.sample_top_k(candidates=self._candidates, k=top_k, min_keep=1) |
|
self._ctx.sample_tail_free(candidates=self._candidates, z=tfs_z, min_keep=1) |
|
self._ctx.sample_typical( |
|
candidates=self._candidates, p=typical_p, min_keep=1 |
|
) |
|
self._ctx.sample_top_p(candidates=self._candidates, p=top_p, min_keep=1) |
|
self._ctx.sample_min_p(candidates=self._candidates, p=min_p, min_keep=1) |
|
self._ctx.sample_temp(candidates=self._candidates, temp=temp) |
|
id_ = self._ctx.sample_token(candidates=self._candidates) |
|
if grammar is not None: |
|
self._ctx.grammar_accept_token(grammar=grammar, token=id_) |
|
return id_ |
|
|
|
def generate_t( |
|
self, |
|
tokens: Sequence[int], |
|
n_keep, |
|
n_discard: int = 256, |
|
im_start=None, |
|
top_k: int = 40, |
|
top_p: float = 0.95, |
|
min_p: float = 0.05, |
|
typical_p: float = 1.0, |
|
temp: float = 0.80, |
|
repeat_penalty: float = 1.1, |
|
repeat_last_n: int = 64, |
|
frequency_penalty: float = 0.0, |
|
presence_penalty: float = 0.0, |
|
tfs_z: float = 1.0, |
|
mirostat_mode: int = 0, |
|
mirostat_tau: float = 5.0, |
|
mirostat_eta: float = 0.1, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
grammar: Optional[LlamaGrammar] = None, |
|
) -> Generator[int, Optional[Sequence[int]], None]: |
|
typical_p = float(typical_p) |
|
frequency_penalty = float(frequency_penalty) |
|
presence_penalty = float(presence_penalty) |
|
tfs_z = float(tfs_z) |
|
mirostat_tau = float(mirostat_tau) |
|
while True: |
|
self.eval_t(tokens, n_keep, n_discard, im_start=im_start) |
|
token = self.sample_t( |
|
top_k=top_k, |
|
top_p=top_p, |
|
min_p=min_p, |
|
typical_p=typical_p, |
|
temp=temp, |
|
repeat_penalty=repeat_penalty, |
|
repeat_last_n=repeat_last_n, |
|
frequency_penalty=frequency_penalty, |
|
presence_penalty=presence_penalty, |
|
tfs_z=tfs_z, |
|
mirostat_mode=mirostat_mode, |
|
mirostat_tau=mirostat_tau, |
|
mirostat_eta=mirostat_eta, |
|
logits_processor=logits_processor, |
|
grammar=grammar, |
|
) |
|
if stopping_criteria is not None and stopping_criteria( |
|
self._input_ids, self._scores[-1, :] |
|
): |
|
return |
|
tokens_or_none = yield token |
|
tokens = [token] |
|
if tokens_or_none is not None: |
|
tokens.extend(tokens_or_none) |
|
|
|
def load_session(self, filepath: str): |
|
n_tokens = POINTER(llama_cpp.c_size_t)(llama_cpp.c_size_t(0)) |
|
tokens = (llama_cpp.llama_token * self.n_ctx())() |
|
retn = llama_cpp.llama_load_session_file(self._ctx.ctx, |
|
filepath.encode('utf-8'), |
|
tokens, |
|
self.n_ctx(), |
|
n_tokens) |
|
self.n_tokens = n_tokens.contents.value |
|
self.input_ids[:self.n_tokens] = tokens[:self.n_tokens] |
|
return retn |
|
|
|
def save_session(self, filepath: str): |
|
tokens = self._input_ids.tolist() |
|
tokens = (llama_cpp.llama_token * len(tokens))(*tokens) |
|
return llama_cpp.llama_save_session_file(self._ctx.ctx, filepath.encode('utf-8'), tokens, self.n_tokens) |
|
|