NST-ML / app.py
LuisG07's picture
debugger on
55bfacd
import os
import tensorflow as tf
# Load compressed models from tensorflow_hub
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
import IPython.display as display
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.figsize'] = (12, 12)
mpl.rcParams['axes.grid'] = False
import numpy as np
import PIL.Image
def tensor_to_image(tensor):
tensor = tensor*255
tensor = np.array(tensor, dtype=np.uint8)
if np.ndim(tensor)>3:
assert tensor.shape[0] == 1
tensor = tensor[0]
return PIL.Image.fromarray(tensor)
def load_img(path_to_img):
max_dim = 1024
img = tf.io.read_file(path_to_img)
img = tf.image.decode_image(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.float32)
shape = tf.cast(tf.shape(img)[:-1], tf.float32)
long_dim = max(shape)
scale = max_dim / long_dim
new_shape = tf.cast(shape * scale, tf.int32)
img = tf.image.resize(img, new_shape)
img = img[tf.newaxis, :]
return img
def imshow(image, title=None):
if len(image.shape) > 3:
image = tf.squeeze(image, axis=0)
plt.imshow(image)
if title:
plt.title(title)
content_layers = ['block5_conv2']
style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']
num_content_layers = len(content_layers)
num_style_layers = len(style_layers)
def vgg_layers(layer_names):
""" Creates a vgg model that returns a list of intermediate output values."""
# Load our model. Load pretrained VGG, trained on imagenet data
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False
outputs = [vgg.get_layer(name).output for name in layer_names]
model = tf.keras.Model([vgg.input], outputs)
return model
def gram_matrix(input_tensor):
result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor, input_tensor)
input_shape = tf.shape(input_tensor)
num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
return result/(num_locations)
class StyleContentModel(tf.keras.models.Model):
def __init__(self, style_layers, content_layers):
super(StyleContentModel, self).__init__()
self.vgg = vgg_layers(style_layers + content_layers)
self.style_layers = style_layers
self.content_layers = content_layers
self.num_style_layers = len(style_layers)
self.vgg.trainable = False
def call(self, inputs):
"Expects float input in [0,1]"
inputs = inputs*255.0
preprocessed_input = tf.keras.applications.vgg19.preprocess_input(inputs)
outputs = self.vgg(preprocessed_input)
style_outputs, content_outputs = (outputs[:self.num_style_layers],
outputs[self.num_style_layers:])
style_outputs = [gram_matrix(style_output)
for style_output in style_outputs]
content_dict = {content_name: value
for content_name, value
in zip(self.content_layers, content_outputs)}
style_dict = {style_name: value
for style_name, value
in zip(self.style_layers, style_outputs)}
return {'content': content_dict, 'style': style_dict}
extractor = StyleContentModel(style_layers, content_layers)
def clip_0_1(image):
return tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
def high_pass_x_y(image):
x_var = image[:, :, 1:, :] - image[:, :, :-1, :]
y_var = image[:, 1:, :, :] - image[:, :-1, :, :]
return x_var, y_var
def total_variation_loss(image):
x_deltas, y_deltas = high_pass_x_y(image)
return tf.reduce_sum(tf.abs(x_deltas)) + tf.reduce_sum(tf.abs(y_deltas))
opt = tf.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=1e-1)
style_weight=1e-2
content_weight=1e4
total_variation_weight=30
epochs = 10
steps_per_epoch = 50
def transfer_style(content_path,style_path,transfer_mode,steps_per_epoch=100,style_weight=1e-2,content_weight=1e4,total_variation_weight=30):
try:
content_image = load_img(content_path)
style_image = load_img(style_path)
if transfer_mode == "Fast_transfer":
res = transfer_style_fast(content_image,style_image)
else:
res = transfer_style_custom(content_image,style_image,int(steps_per_epoch),style_weight,content_weight,total_variation_weight)
res = tensor_to_image(res)
except Exception as ex:
raise Exception(ex)
return res
def transfer_style_fast(content_image,style_image):
import tensorflow_hub as hub
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
return hub_model(tf.constant(content_image), tf.constant(style_image))[0]
def transfer_style_custom(content_image,style_image,steps_per_epoch=100,style_weight=1e-2,content_weight=1e4,total_variation_weight=30):
def style_content_loss(outputs):
style_outputs = outputs['style']
content_outputs = outputs['content']
style_loss = tf.add_n([tf.reduce_mean((style_outputs[name]-style_targets[name])**2)
for name in style_outputs.keys()])
style_loss *= style_weight / num_style_layers
content_loss = tf.add_n([tf.reduce_mean((content_outputs[name]-content_targets[name])**2)
for name in content_outputs.keys()])
content_loss *= content_weight / num_content_layers
loss = style_loss + content_loss
return loss
@tf.function()
def train_step(image):
with tf.GradientTape() as tape:
outputs = extractor(image)
loss = style_content_loss(outputs)
loss += total_variation_weight*tf.image.total_variation(image)
grad = tape.gradient(loss, image)
opt.apply_gradients([(grad, image)])
image.assign(clip_0_1(image))
try:
style_targets = extractor(style_image)['style']
content_targets = extractor(content_image)['content']
image = tf.Variable(content_image)
step = 0
for n in range(epochs):
for m in range(steps_per_epoch):
step += 1
train_step(image)
except Exception as ex:
raise Exception(ex)
return image
import gradio as gr
inputs = [
gr.inputs.Image(type="filepath"),
gr.inputs.Image(type="filepath"),
gr.inputs.Radio(["Fast_transfer","Custom_transfer"]),
gr.inputs.Slider(1,100,default=30,step=1),
gr.inputs.Number(1e-2),
gr.inputs.Number(1e4),
gr.inputs.Number(30)
]
iface = gr.Interface(
fn=transfer_style,
inputs=inputs,
examples=[["NST/etsii.jpg","NST/data/style_2.jpg","Fast_transfer",30,1e-2,1e4,30],
["NST/data/content_9.jpg","NST/ola.png","Fast_transfer",30,1e-2,1e4,30],
["NST/sailboat_cropped.jpg","NST/sketch_cropped.png","Fast_transfer",30,1e-2,1e4,30],
["NST/armadillo.jpg","NST/data/style_3.jpg","Fast_transfer",30,1e-2,1e4,30],
["NST/gato.jpg","NST/data/style_4.jpg","Fast_transfer",30,1e-2,1e4,30],
],
outputs="image").launch(debug=True)