Spaces:
Sleeping
Sleeping
File size: 20,383 Bytes
2cd207c 6963450 2cd207c 6febf41 5bfac4b 6963450 319290c 6963450 2cd207c 319290c 6bdebc7 319290c 6bdebc7 319290c 6bdebc7 b21aab5 6bdebc7 319290c 6bdebc7 2cd207c 319290c 2cd207c 319290c 2cd207c 367d6d8 2cd207c 319290c 2cd207c 6febf41 367d6d8 2cd207c 367d6d8 b21aab5 367d6d8 b21aab5 367d6d8 b21aab5 5bfac4b b21aab5 367d6d8 bca2bcb 367d6d8 73254eb 367d6d8 b21aab5 367d6d8 5bfac4b 6963450 5acd4d2 6963450 5bfac4b 6963450 5bfac4b 6963450 5acd4d2 6963450 5acd4d2 367d6d8 5acd4d2 5bfac4b 6963450 5bfac4b 6963450 5bfac4b 2c3dcf3 b21aab5 5bfac4b b21aab5 5bfac4b b21aab5 5bfac4b b21aab5 5bfac4b b21aab5 5bfac4b b21aab5 2c3dcf3 5bfac4b 2c3dcf3 5bfac4b 2c3dcf3 5bfac4b 2c3dcf3 b21aab5 2c3dcf3 5bfac4b 319290c 5bfac4b b21aab5 5bfac4b b21aab5 6bdebc7 319290c b21aab5 6bdebc7 b21aab5 319290c b21aab5 6963450 b21aab5 6963450 b21aab5 6963450 367d6d8 5bfac4b bca2bcb 5bfac4b b21aab5 5bfac4b 2c3dcf3 5bfac4b 73254eb ab37b94 bca2bcb ab37b94 bca2bcb 367d6d8 2c3dcf3 367d6d8 b21aab5 367d6d8 2cd207c 319290c b21aab5 319290c bca2bcb 319290c 2cd207c 319290c 2cd207c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import streamlit as st
import numpy as np
import random
import pandas as pd
import glob
from PIL import Image
import datasets
from datasets import load_dataset, Dataset, load_from_disk
from huggingface_hub import login
import os
import requests
from bs4 import BeautifulSoup
import re
import altair as alt
from streamlit_vega_lite import vega_lite_component, altair_component, _component_func
SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'avg_rank', 'pop': 'model_download_count'}
# hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"])
@st.cache_resource
def altair_histogram(hist_data, sort_by, mini, maxi):
brushed = alt.selection_interval(encodings=['x'], name="brushed")
chart = (
alt.Chart(hist_data)
.mark_bar(opacity=0.7, cornerRadius=2)
.encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()")
# .add_selection(brushed)
# .properties(width=800, height=300)
)
# Create a transparent rectangle for highlighting the range
highlight = (
alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]}))
.mark_rect(opacity=0.3)
.encode(x='x1', x2='x2')
# .properties(width=800, height=300)
)
# Layer the chart and the highlight rectangle
layered_chart = alt.layer(chart, highlight)
return layered_chart
# return (
# alt.Chart(hist_data)
# .mark_bar()
# .encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=20)), y="count()")
# .add_selection(brushed)
# .properties(width=600, height=300)
# )
class GalleryApp:
def __init__(self, promptBook, images_ds):
self.promptBook = promptBook
self.images_ds = images_ds
def gallery_masonry(self, items, col_num, info):
cols = st.columns(col_num)
# # sort items by brisque score
# items = items.sort_values(by=['brisque'], ascending=True).reset_index(drop=True)
for idx in range(len(items)):
with cols[idx % col_num]:
image = self.images_ds[items.iloc[idx]['row_idx'].item()]['image']
st.image(image,
use_column_width=True,
)
# with st.expander('Similarity Info'):
# tab1, tab2 = st.tabs(['Most Similar', 'Least Similar'])
# with tab1:
# st.image(image, use_column_width=True)
# with tab2:
# st.image(image, use_column_width=True)
# show checkbox
self.promptBook.loc[items.iloc[idx]['row_idx'].item(), 'checked'] = st.checkbox(
'Select', value=self.promptBook.loc[items.iloc[idx]['row_idx'].item(), 'checked'],
key=f'select_{idx}')
for key in info:
st.write(f"**{key}**: {items.iloc[idx][key]}")
def gallery_standard(self, items, col_num, info):
rows = len(items) // col_num + 1
# containers = [st.container() for _ in range(rows * 2)]
containers = [st.container() for _ in range(rows)]
for idx in range(0, len(items), col_num):
# assign one container for each row
# row_idx = (idx // col_num) * 2
row_idx = idx // col_num
with containers[row_idx]:
cols = st.columns(col_num)
for j in range(col_num):
if idx + j < len(items):
with cols[j]:
# show image
image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image']
st.image(image, use_column_width=True)
# show checkbox
self.promptBook.loc[items.iloc[idx + j]['row_idx'].item(), 'checked'] = st.checkbox(
'Select', value=self.promptBook.loc[items.iloc[idx + j]['row_idx'].item(), 'checked'],
key=f'select_{idx + j}')
# st.write(idx+j)
# show selected info
for key in info:
st.write(f"**{key}**: {items.iloc[idx + j][key]}")
# st.write(row_idx/2, idx+j, rows)
# extra_info = st.checkbox('Extra Info', key=f'extra_info_{idx+j}')
# if extra_info:
# with containers[row_idx+1]:
# st.image(image, use_column_width=True)
def selection_panel(self, items):
selecters = st.columns([4, 1, 1])
with selecters[0]:
types = st.columns([1, 3])
with types[0]:
sort_type = st.selectbox('Sort by', ['IDs and Names', 'Scores'])
with types[1]:
if sort_type == 'IDs and Names':
sort_by = st.selectbox('Sort by',
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id'],
label_visibility='hidden')
elif sort_type == 'Scores':
sort_by = st.multiselect('Sort by', ['clip_score', 'avg_rank', 'popularity'],
label_visibility='hidden',
default=['clip_score', 'avg_rank', 'popularity'])
# process sort_by to map to the column name
if len(sort_by) == 3:
sort_by = 'clip+rank+pop'
elif len(sort_by) == 2:
if 'clip_score' in sort_by and 'avg_rank' in sort_by:
sort_by = 'clip+rank'
elif 'clip_score' in sort_by and 'popularity' in sort_by:
sort_by = 'clip+pop'
elif 'avg_rank' in sort_by and 'popularity' in sort_by:
sort_by = 'rank+pop'
elif len(sort_by) == 1:
if 'popularity' in sort_by:
sort_by = 'model_download_count'
else:
sort_by = sort_by[0]
print(sort_by)
with selecters[1]:
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0)
if order == 'Ascending':
order = True
else:
order = False
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)
with selecters[2]:
filter = st.selectbox('Filter', ['Safe', 'All', 'Unsafe'])
print('filter', filter)
# initialize unsafe_modelVersion_ids
if filter == 'Safe':
# return checked items
items = items[items['checked'] == False].reset_index(drop=True)
elif filter == 'Unsafe':
# return unchecked items
items = items[items['checked'] == True].reset_index(drop=True)
print(items)
info = st.multiselect('Show Info',
['model_download_count', 'clip_score', 'avg_rank', 'model_name', 'model_id',
'modelVersion_name', 'modelVersion_id', 'clip+rank', 'clip+pop', 'rank+pop',
'clip+rank+pop'],
default=sort_by)
# add one annotation
mentioned_scores = []
for i in info:
if '+' in i:
mentioned = i.split('+')
for m in mentioned:
if SCORE_NAME_MAPPING[m] not in mentioned_scores:
mentioned_scores.append(SCORE_NAME_MAPPING[m])
if len(mentioned_scores) > 0:
st.info(
f"**Note:** The scores {mentioned_scores} are normalized to [0, 1] for each score type, and then added together. The higher the score, the better the model.")
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')
return items, info, col_num
def selection_panel_2(self, items):
selecters = st.columns([1, 4])
# select sort type
with selecters[0]:
sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names'])
if sort_type == 'Scores':
sort_by = 'weighted_score_sum'
# select other options
with selecters[1]:
if sort_type == 'IDs and Names':
sub_selecters = st.columns([3, 1])
# select sort by
with sub_selecters[0]:
sort_by = st.selectbox('Sort by',
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id'],
label_visibility='hidden')
continue_idx = 1
else:
# add custom weights
sub_selecters = st.columns([1, 1, 1, 1])
if 'score_weights' not in st.session_state:
st.session_state.score_weights = [1.0, 0.8, 0.2]
with sub_selecters[0]:
clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[0], step=0.1, help='the weight for normalized clip score')
with sub_selecters[1]:
rank_weight = st.number_input('Distinctiveness Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[1], step=0.1, help='the weight for average rank')
with sub_selecters[2]:
pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[2], step=0.1, help='the weight for normalized popularity score')
st.session_state.score_weights = [clip_weight, rank_weight, pop_weight]
items.loc[:, 'weighted_score_sum'] = round(items['norm_clip'] * clip_weight + items['avg_rank'] * rank_weight + items[
'norm_pop'] * pop_weight, 4)
continue_idx = 3
# select threshold
with sub_selecters[continue_idx]:
dist_threshold = st.number_input('Distinctiveness Threshold', min_value=0.0, max_value=1.0, value=0.84, step=0.01, help='Only show models with distinctiveness score lower than this threshold, set 1.0 to show all images')
items = items[items['avg_rank'] < dist_threshold].reset_index(drop=True)
# draw a distribution histogram
if sort_type == 'Scores':
try:
with st.expander('Show score distribution histogram and select score range'):
st.write('**Score distribution histogram**')
chart_space = st.container()
# st.write('Select the range of scores to show')
hist_data = pd.DataFrame(items[sort_by])
mini = hist_data[sort_by].min().item()
mini = mini//0.1 * 0.1
maxi = hist_data[sort_by].max().item()
maxi = maxi//0.1 * 0.1 + 0.1
st.write('**Select the range of scores to show**')
r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed')
with chart_space:
st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True)
# event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by))
# r = event_dict.get(sort_by)
if r:
items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True)
# st.write(r)
except:
pass
display_options = st.columns([1, 4])
with display_options[0]:
# select order
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0)
if order == 'Ascending':
order = True
else:
order = False
with display_options[1]:
# select info to show
info = st.multiselect('Show Info',
['model_download_count', 'clip_score', 'avg_rank', 'model_name', 'model_id',
'modelVersion_name', 'modelVersion_id', 'clip+rank', 'clip+pop', 'rank+pop',
'clip+rank+pop', 'weighted_score_sum'],
default=sort_by)
# apply sorting to dataframe
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)
# select number of columns
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')
return items, info, col_num
def app(self):
st.title('Model Visualization and Retrieval')
st.write('This is a gallery of images generated by the models')
with st.sidebar:
prompt_tags = self.promptBook['tag'].unique()
# sort tags by alphabetical order
prompt_tags = np.sort(prompt_tags)[::-1]
tag = st.selectbox('Select a tag', prompt_tags)
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
original_prompts = np.sort(items['prompt'].unique())[::-1]
# remove the first four items in the prompt, which are mostly the same
if tag != 'abstract':
prompts = [', '.join(x.split(', ')[4:]) for x in original_prompts]
prompt = st.selectbox('Select prompt', prompts)
idx = prompts.index(prompt)
prompt_full = ', '.join(original_prompts[idx].split(', ')[:4]) + ', ' + prompt
else:
prompt_full = st.selectbox('Select prompt', original_prompts)
prompt_id = items[items['prompt'] == prompt_full]['prompt_id'].unique()[0]
items = items[items['prompt_id'] == prompt_id].reset_index(drop=True)
# show image metadata
image_metadatas = ['prompt_id', 'prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed']
for key in image_metadatas:
label = ' '.join(key.split('_')).capitalize()
st.write(f"**{label}**")
if items[key][0] == ' ':
st.write('`None`')
else:
st.caption(f"{items[key][0]}")
# for tag as civitai, add civitai reference
if tag == 'civitai':
try:
st.write('**Civitai Reference**')
res = requests.get(f'https://civitai.com/images/{prompt_id.item()}')
# st.write(res.text)
soup = BeautifulSoup(res.text, 'html.parser')
image_section = soup.find('div', {'class': 'mantine-12rlksp'})
image_url = image_section.find('img')['src']
st.image(image_url, use_column_width=True)
except:
pass
# add safety check for some prompts
safety_check = True
unsafe_prompts = {}
# initialize unsafe prompts
for prompt_tag in prompt_tags:
unsafe_prompts[prompt_tag] = []
# manually add unsafe prompts
unsafe_prompts['civitai'] = [375790, 366222, 295008, 256477]
unsafe_prompts['people'] = [53]
unsafe_prompts['art'] = [23]
unsafe_prompts['abstract'] = [10, 12]
unsafe_prompts['food'] = [34]
if int(prompt_id.item()) in unsafe_prompts[tag]:
st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.')
safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'{prompt_id}')
if safety_check:
items, info, col_num = self.selection_panel_2(items)
# self.gallery_standard(items, col_num, info)
with st.form(key=f'{prompt_id}', clear_on_submit=True):
# buttons = st.columns([1, 1, 1])
buttons_space = st.columns([1, 1, 1, 1])
gallery_space = st.empty()
# with buttons[0]:
# submit = st.form_submit_button('Save selections', on_click=self.save_checked, use_container_width=True, type='primary')
# with buttons[1]:
# submit = st.form_submit_button('Reset current prompt', on_click=self.reset_current_prompt, kwargs={'prompt_id': prompt_id} , use_container_width=True)
# with buttons[2]:
# submit = st.form_submit_button('Reset all selections', on_click=self.reset_all, use_container_width=True)
with gallery_space.container():
self.gallery_standard(items, col_num, info)
with buttons_space[0]:
st.form_submit_button('Confirm and Continue', use_container_width=True, type='primary')
with buttons_space[1]:
st.form_submit_button('Select All', use_container_width=True)
with buttons_space[2]:
st.form_submit_button('Deselect All', use_container_width=True)
with buttons_space[3]:
st.form_submit_button('Refresh', on_click=gallery_space.empty, use_container_width=True)
def reset_current_prompt(self, prompt_id):
# reset current prompt
self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False
self.save_checked()
def reset_all(self):
# reset all
self.promptBook.loc[:, 'checked'] = False
self.save_checked()
def save_checked(self):
# save checked images to huggingface dataset
dataset = load_dataset('NYUSHPRP/ModelCofferMetadata', split='train')
# get checked images
checked_info = self.promptBook['checked']
if 'checked' in dataset.column_names:
dataset = dataset.remove_columns('checked')
dataset = dataset.add_column('checked', checked_info)
# print('metadata dataset: ', dataset)
st.cache_data.clear()
dataset.push_to_hub('NYUSHPRP/ModelCofferMetadata', split='train')
@st.cache_data
def load_hf_dataset():
# login to huggingface
login(token=os.environ.get("HF_TOKEN"))
# load from huggingface
roster = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferRoster', split='train'))
promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferMetadata', split='train'))
images_ds = load_from_disk(os.path.join(os.getcwd(), '../data', 'promptbook'))
# process dataset
roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
'model_download_count']].drop_duplicates().reset_index(drop=True)
# add 'checked' column to promptBook if not exist
if 'checked' not in promptBook.columns:
promptBook.loc[:, 'checked'] = False
# add 'custom_score_weights' column to promptBook if not exist
if 'weighted_score_sum' not in promptBook.columns:
promptBook.loc[:, 'weighted_score_sum'] = 0
# merge roster and promptbook
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
on=['model_id', 'modelVersion_id'], how='left')
# add column to record current row index
promptBook.loc[:, 'row_idx'] = promptBook.index
return roster, promptBook, images_ds
if __name__ == '__main__':
st.set_page_config(layout="wide")
roster, promptBook, images_ds = load_hf_dataset()
app = GalleryApp(promptBook=promptBook, images_ds=images_ds)
app.app()
|