File size: 32,905 Bytes
fb1a1d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
import json
import os
import requests

import altair as alt
import extra_streamlit_components as stx
import numpy as np
import pandas as pd
import streamlit as st
import streamlit.components.v1 as components

from bs4 import BeautifulSoup
from datasets import load_dataset, Dataset, load_from_disk
from huggingface_hub import login
from streamlit_agraph import agraph, Node, Edge, Config
from streamlit_extras.switch_page_button import switch_page
from streamlit_extras.no_default_selectbox import selectbox
from sklearn.svm import LinearSVC

SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'msq_score', 'pop': 'model_download_count'}


class GalleryApp:
    def __init__(self, promptBook, images_ds):
        self.promptBook = promptBook
        self.images_ds = images_ds

        # init gallery state
        if 'gallery_state' not in st.session_state:
            st.session_state.gallery_state = {}

        # initialize selected_dict
        if 'selected_dict' not in st.session_state:
            st.session_state['selected_dict'] = {}

        if 'gallery_focus' not in st.session_state:
            st.session_state.gallery_focus = {'tag': None, 'prompt': None}

    def gallery_standard(self, items, col_num, info):
        rows = len(items) // col_num + 1
        containers = [st.container() for _ in range(rows)]
        for idx in range(0, len(items), col_num):
            row_idx = idx // col_num
            with containers[row_idx]:
                cols = st.columns(col_num)
                for j in range(col_num):
                    if idx + j < len(items):
                        with cols[j]:
                            # show image
                            # image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image']
                            image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.iloc[idx + j]['image_id']}.png"
                            st.image(image, use_column_width=True)

                            # handel checkbox information
                            prompt_id = items.iloc[idx + j]['prompt_id']
                            modelVersion_id = items.iloc[idx + j]['modelVersion_id']

                            check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False

                            # st.write("Position: ", idx + j)

                            # show checkbox
                            st.checkbox('Select', key=f'select_{prompt_id}_{modelVersion_id}', value=check_init)

                            # show selected info
                            for key in info:
                                st.write(f"**{key}**: {items.iloc[idx + j][key]}")

    def gallery_graph(self, items):
        items = load_tsne_coordinates(items)

        # sort items to be popularity from low to high, so that most popular ones will be on the top
        items = items.sort_values(by=['model_download_count'], ascending=True).reset_index(drop=True)

        scale = 50
        items.loc[:, 'x'] = items['x'] * scale
        items.loc[:, 'y'] = items['y'] * scale

        nodes = []
        edges = []

        for idx in items.index:
            # if items.loc[idx, 'modelVersion_id'] in st.session_state.selected_dict.get(items.loc[idx, 'prompt_id'], 0):
            #     opacity = 0.2
            # else:
            #     opacity = 1.0

            nodes.append(Node(id=items.loc[idx, 'image_id'],
                              # label=str(items.loc[idx, 'model_name']),
                              title=f"model name: {items.loc[idx, 'model_name']}\nmodelVersion name: {items.loc[idx, 'modelVersion_name']}\nclip score: {items.loc[idx, 'clip_score']}\nmcos score: {items.loc[idx, 'mcos_score']}\npopularity: {items.loc[idx, 'model_download_count']}",
                              size=20,
                              shape='image',
                              image=f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.loc[idx, 'image_id']}.png",
                              x=items.loc[idx, 'x'].item(),
                              y=items.loc[idx, 'y'].item(),
                              # fixed=True,
                              color={'background': '#E0E0E1', 'border': '#ffffff', 'highlight': {'border': '#F04542'}},
                              # opacity=opacity,
                              shadow={'enabled': True, 'color': 'rgba(0,0,0,0.4)', 'size': 10, 'x': 1, 'y': 1},
                              borderWidth=2,
                              shapeProperties={'useBorderWithImage': True},
                              )
                         )

        config = Config(width='100%',
                        height='600',
                        directed=True,
                        physics=False,
                        hierarchical=False,
                        interaction={'navigationButtons': True, 'dragNodes': False, 'multiselect': False},
                        # **kwargs
                        )

        return agraph(nodes=nodes,
                      edges=edges,
                      config=config,
                      )

    def selection_panel(self, items):
        # temperal function

        selecters = st.columns([1, 4])

        if 'score_weights' not in st.session_state:
            # st.session_state.score_weights = [1.0, 0.8, 0.2, 0.8]
            st.session_state.score_weights = [1.0, 0.8, 0.2]

        # select sort type
        with selecters[0]:
            sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names'])
            if sort_type == 'Scores':
                sort_by = 'weighted_score_sum'

        # select other options
        with selecters[1]:
            if sort_type == 'IDs and Names':
                sub_selecters = st.columns([3])
                # select sort by
                with sub_selecters[0]:
                    sort_by = st.selectbox('Sort by',
                                           ['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', 'norm_nsfw'],
                                           label_visibility='hidden')

                continue_idx = 1

            else:
                # add custom weights
                sub_selecters = st.columns([1, 1, 1])

                with sub_selecters[0]:
                    clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=1.0, step=0.1, help='the weight for normalized clip score')
                with sub_selecters[1]:
                    mcos_weight = st.number_input('Dissimilarity Weight', min_value=-100.0, max_value=100.0, value=0.8, step=0.1, help='the weight for m(eam) s(imilarity) q(antile) score for measuring distinctiveness')
                with sub_selecters[2]:
                    pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=0.2, step=0.1, help='the weight for normalized popularity score')

                items.loc[:, 'weighted_score_sum'] = round(items[f'norm_clip'] * clip_weight + items[f'norm_mcos'] * mcos_weight + items[
                    'norm_pop'] * pop_weight, 4)

                continue_idx = 3

                # save latest weights
                st.session_state.score_weights[0] = round(clip_weight, 2)
                st.session_state.score_weights[1] = round(mcos_weight, 2)
                st.session_state.score_weights[2] = round(pop_weight, 2)

            # # select threshold
            # with sub_selecters[continue_idx]:
            #     nsfw_threshold = st.number_input('NSFW Score Threshold', min_value=0.0, max_value=1.0, value=0.8, step=0.01, help='Only show models with nsfw score lower than this threshold, set 1.0 to show all images')
            #     items = items[items['norm_nsfw'] <= nsfw_threshold].reset_index(drop=True)
            #
            # # save latest threshold
            # st.session_state.score_weights[3] = nsfw_threshold

        # # draw a distribution histogram
        # if sort_type == 'Scores':
        #     try:
        #         with st.expander('Show score distribution histogram and select score range'):
        #             st.write('**Score distribution histogram**')
        #             chart_space = st.container()
        #             # st.write('Select the range of scores to show')
        #             hist_data = pd.DataFrame(items[sort_by])
        #             mini = hist_data[sort_by].min().item()
        #             mini = mini//0.1 * 0.1
        #             maxi = hist_data[sort_by].max().item()
        #             maxi = maxi//0.1 * 0.1 + 0.1
        #             st.write('**Select the range of scores to show**')
        #             r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed')
        #             with chart_space:
        #                 st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True)
        #             # event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by))
        #             # r = event_dict.get(sort_by)
        #             if r:
        #                 items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True)
        #                 # st.write(r)
        #     except:
        #         pass

        display_options = st.columns([1, 4])

        with display_options[0]:
            # select order
            order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0)
            if order == 'Ascending':
                order = True
            else:
                order = False

        with display_options[1]:

            # select info to show
            info = st.multiselect('Show Info',
                                  ['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id',
                                   'weighted_score_sum', 'model_download_count', 'clip_score', 'mcos_score',
                                   'nsfw_score', 'norm_nsfw'],
                                  default=sort_by)

        # apply sorting to dataframe
        items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)

        # select number of columns
        col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')

        return items, info, col_num

    def sidebar(self, items, prompt_id, note):
        with st.sidebar:
            # prompt_tags = self.promptBook['tag'].unique()
            # # sort tags by alphabetical order
            # prompt_tags = np.sort(prompt_tags)[::1]
            #
            # tag = st.selectbox('Select a tag', prompt_tags, index=5)
            #
            # items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
            #
            # prompts = np.sort(items['prompt'].unique())[::1]
            #
            # selected_prompt = st.selectbox('Select prompt', prompts, index=3)

            # mode = st.radio('Select a mode', ['Gallery', 'Graph'], horizontal=True, index=1)

            # items = items[items['prompt'] == selected_prompt].reset_index(drop=True)

            # st.title('Model Visualization and Retrieval')

            # show source
            if isinstance(note, str):
                if note.isdigit():
                    st.caption(f"`Source: civitai`")
                else:
                    st.caption(f"`Source: {note}`")
            else:
                st.caption("`Source: Parti-prompts`")

            # show image metadata
            image_metadatas = ['prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed']
            for key in image_metadatas:
                label = ' '.join(key.split('_')).capitalize()
                st.write(f"**{label}**")
                if items[key][0] == ' ':
                    st.write('`None`')
                else:
                    st.caption(f"{items[key][0]}")

            # for note as civitai image id, add civitai reference
            if isinstance(note, str) and note.isdigit():
                try:
                    st.write(f'**[Civitai Reference](https://civitai.com/images/{note})**')
                    res = requests.get(f'https://civitai.com/images/{note}')
                    # st.write(res.text)
                    soup = BeautifulSoup(res.text, 'html.parser')
                    image_section = soup.find('div', {'class': 'mantine-12rlksp'})
                    image_url = image_section.find('img')['src']
                    st.image(image_url, use_column_width=True)
                except:
                    pass

        # return prompt_tags, tag, prompt_id, items

    def app(self):
        st.write('### Model Visualization and Retrieval')
        # st.write('This is a gallery of images generated by the models')

        # build the tabular view
        prompt_tags = self.promptBook['tag'].unique()
        # sort tags by alphabetical order
        prompt_tags = np.sort(prompt_tags)[::1].tolist()

        # chosen_data = [stx.TabBarItemData(id=tag, title=tag, description='') for tag in prompt_tags]
        # tag = stx.tab_bar(chosen_data, key='tag', default='food')

        # save tag to session state on change
        tag = st.radio('Select a tag', prompt_tags, index=5, horizontal=True, key='tag', label_visibility='collapsed')

        # tabs = st.tabs(prompt_tags)
        # for i in range(len(prompt_tags)):
        #     with tabs[i]:
        #         tag = prompt_tags[i]
        items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)

        prompts = np.sort(items['prompt'].unique())[::1].tolist()

        # st.caption('Select a prompt')
        subset_selector = st.columns([3, 1])
        with subset_selector[0]:
            selected_prompt = selectbox('Select prompt', prompts, key=f'prompt_{tag}', no_selection_label='---', label_visibility='collapsed', index=0)
            # st.session_state.prompt_idx_last_time = prompts.index(selected_prompt) if selected_prompt else 0

        if selected_prompt is None:
            # st.markdown(':orange[Please select a prompt above👆]')
            st.write('**Feel free to navigate among tags and pages! Your selection will be saved within one log-in session.**')

            with subset_selector[-1]:
                st.write(':orange[👈 **Please select a prompt**]')

        else:
            items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
            prompt_id = items['prompt_id'].unique()[0]
            note = items['note'].unique()[0]

            # add state to session state
            if prompt_id not in st.session_state.gallery_state:
                st.session_state.gallery_state[prompt_id] = 'graph'

            # add focus to session state
            st.session_state.gallery_focus['tag'] = tag
            st.session_state.gallery_focus['prompt'] = selected_prompt

            # add safety check for some prompts
            safety_check = True

            # load unsafe prompts
            unsafe_prompts = json.load(open('./data/unsafe_prompts.json', 'r'))
            for prompt_tag in prompt_tags:
                if prompt_tag not in unsafe_prompts:
                    unsafe_prompts[prompt_tag] = []
            # # manually add unsafe prompts
            # unsafe_prompts['world knowledge'] = [83]
            # unsafe_prompts['abstract'] = [1, 3]

            if int(prompt_id.item()) in unsafe_prompts[tag]:
                st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.')
                safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'safety_{prompt_id}')

            print('current state: ', st.session_state.gallery_state[prompt_id])

            if st.session_state.gallery_state[prompt_id] == 'graph':
                if safety_check:
                    self.graph_mode(prompt_id, items)
                with subset_selector[-1]:
                    has_selection = False
                    try:
                        if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
                            has_selection = True
                    except:
                        pass

                    if has_selection:
                        checkout = st.button('Check out selections', use_container_width=True, type='primary')
                        if checkout:
                            print('checkout')

                            st.session_state.gallery_state[prompt_id] = 'gallery'
                            print(st.session_state.gallery_state[prompt_id])
                            st.experimental_rerun()
                    else:
                        st.write(':orange[👇 **Select images you like below**]')

            elif st.session_state.gallery_state[prompt_id] == 'gallery':
                items = items[items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(
                    drop=True)
                self.gallery_mode(prompt_id, items)

                with subset_selector[-1]:
                    state_operations = st.columns([1, 1])
                    with state_operations[0]:
                        back = st.button('Back to 🖼️', use_container_width=True)
                        if back:
                            st.session_state.gallery_state[prompt_id] = 'graph'
                            st.experimental_rerun()

                    with state_operations[1]:
                        forward = st.button('Check out', use_container_width=True, type='primary', on_click=self.submit_actions, args=('Continue', prompt_id))
                        if forward:
                            switch_page('ranking')

        try:
            self.sidebar(items, prompt_id, note)
        except:
            pass

    def graph_mode(self, prompt_id, items):
        graph_cols = st.columns([3, 1])
        # prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}",
        #                        disabled=False, key=f'{prompt_id}')
        # if prompt:
        #     switch_page("ranking")

        with graph_cols[0]:
            graph_space = st.empty()

            with graph_space.container():
                return_value = self.gallery_graph(items)

        with graph_cols[1]:
            if return_value:
                with st.form(key=f'{prompt_id}'):
                    image_url = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{return_value}.png"

                    st.image(image_url)

                    item = items[items['image_id'] == return_value].reset_index(drop=True).iloc[0]
                    modelVersion_id = item['modelVersion_id']

                    # handle selection
                    if 'selected_dict' in st.session_state:
                        if item['prompt_id'] not in st.session_state.selected_dict:
                            st.session_state.selected_dict[item['prompt_id']] = []

                        if modelVersion_id in st.session_state.selected_dict[item['prompt_id']]:
                            checked = True
                        else:
                            checked = False

                    if checked:
                        # deselect = st.button('Deselect', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True)
                        deselect = st.form_submit_button('Deselect', use_container_width=True)
                        if deselect:
                            st.session_state.selected_dict[item['prompt_id']].remove(item['modelVersion_id'])
                            self.remove_ranking_states(item['prompt_id'])
                            st.experimental_rerun()

                    else:
                        # select = st.button('Select', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True, type='primary')
                        select = st.form_submit_button('Select', use_container_width=True, type='primary')
                        if select:
                            st.session_state.selected_dict[item['prompt_id']].append(item['modelVersion_id'])
                            self.remove_ranking_states(item['prompt_id'])
                            st.experimental_rerun()

                    # st.write(item)
                    infos = ['model_name', 'modelVersion_name', 'model_download_count', 'clip_score', 'mcos_score',
                             'nsfw_score']

                    infos_df = item[infos]
                    # rename columns
                    infos_df = infos_df.rename(index={'model_name': 'Model', 'modelVersion_name': 'Version', 'model_download_count': 'Downloads', 'clip_score': 'Clip Score', 'mcos_score': 'mcos Score', 'nsfw_score': 'NSFW Score'})
                    st.table(infos_df)

                    # for info in infos:
                    #     st.write(f"**{info}**:")
                    #     st.write(item[info])

            else:
                st.info('Please click on an image to show')

    def gallery_mode(self, prompt_id, items):
        items, info, col_num = self.selection_panel(items)

        # if 'selected_dict' in st.session_state:
        #     # st.write('checked: ', str(st.session_state.selected_dict.get(prompt_id, [])))
        #     dynamic_weight_options = ['Grid Search', 'SVM', 'Greedy']
        #     dynamic_weight_panel = st.columns(len(dynamic_weight_options))
        #
        #     if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
        #         btn_disable = False
        #     else:
        #         btn_disable = True
        #
        #     for i in range(len(dynamic_weight_options)):
        #         method = dynamic_weight_options[i]
        #         with dynamic_weight_panel[i]:
        #             btn = st.button(method, use_container_width=True, disabled=btn_disable, on_click=self.dynamic_weight, args=(prompt_id, items, method))

        # prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}", disabled=False, key=f'{prompt_id}')
        # if prompt:
        #     switch_page("ranking")

        # with st.form(key=f'{prompt_id}'):
            # buttons = st.columns([1, 1, 1])
        # buttons_space = st.columns([1, 1, 1])
        gallery_space = st.empty()

        # with buttons_space[0]:
        #     continue_btn = st.button('Proceed selections to ranking', use_container_width=True, type='primary')
        #     if continue_btn:
        #         # self.submit_actions('Continue', prompt_id)
        #         switch_page("ranking")
        #
        # with buttons_space[1]:
        #     deselect_btn = st.button('Deselect All', use_container_width=True)
        #     if deselect_btn:
        #         self.submit_actions('Deselect', prompt_id)
        #
        # with buttons_space[2]:
        #     refresh_btn = st.button('Refresh', on_click=gallery_space.empty, use_container_width=True)

        with gallery_space.container():
            self.gallery_standard(items, col_num, info)

    def submit_actions(self, status, prompt_id):
        # remove counter from session state
        # st.session_state.pop('counter', None)
        self.remove_ranking_states('prompt_id')
        if status == 'Select':
            modelVersions = self.promptBook[self.promptBook['prompt_id'] == prompt_id]['modelVersion_id'].unique()
            st.session_state.selected_dict[prompt_id] = modelVersions.tolist()
            print(st.session_state.selected_dict, 'select')
            st.experimental_rerun()
        elif status == 'Deselect':
            st.session_state.selected_dict[prompt_id] = []
            print(st.session_state.selected_dict, 'deselect')
            st.experimental_rerun()
            # self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False
        elif status == 'Continue':
            st.session_state.selected_dict[prompt_id] = []
            for key in st.session_state:
                keys = key.split('_')
                if keys[0] == 'select' and keys[1] == str(prompt_id):
                    if st.session_state[key]:
                        st.session_state.selected_dict[prompt_id].append(int(keys[2]))
            # switch_page("ranking")
            print(st.session_state.selected_dict, 'continue')
            # st.experimental_rerun()

    def dynamic_weight(self, prompt_id, items, method='Grid Search'):
        selected = items[
            items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(drop=True)
        optimal_weight = [0, 0, 0]

        if method == 'Grid Search':
            # grid search method
            top_ranking = len(items) * len(selected)

            for clip_weight in np.arange(-1, 1, 0.1):
                for mcos_weight in np.arange(-1, 1, 0.1):
                    for pop_weight in np.arange(-1, 1, 0.1):

                        weight_all = clip_weight*items[f'norm_clip'] + mcos_weight*items[f'norm_mcos'] + pop_weight*items['norm_pop']
                        weight_all_sorted = weight_all.sort_values(ascending=False).reset_index(drop=True)
                        # print('weight_all_sorted:', weight_all_sorted)
                        weight_selected = clip_weight*selected[f'norm_clip'] + mcos_weight*selected[f'norm_mcos'] + pop_weight*selected['norm_pop']

                        # get the index of values of weight_selected in weight_all_sorted
                        rankings = []
                        for weight in weight_selected:
                            rankings.append(weight_all_sorted.index[weight_all_sorted == weight].tolist()[0])
                        if sum(rankings) <= top_ranking:
                            top_ranking = sum(rankings)
                            print('current top ranking:', top_ranking, rankings)
                            optimal_weight = [clip_weight, mcos_weight, pop_weight]
            print('optimal weight:', optimal_weight)

        elif method == 'SVM':
            # svm method
            print('start svm method')
            # get residual dataframe that contains models not selected
            residual = items[~items['modelVersion_id'].isin(selected['modelVersion_id'])].reset_index(drop=True)
            residual = residual[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
            residual = residual.to_numpy()
            selected = selected[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
            selected = selected.to_numpy()

            y = np.concatenate((np.full((len(selected), 1), -1), np.full((len(residual), 1), 1)), axis=0).ravel()
            X = np.concatenate((selected, residual), axis=0)

            # fit svm model, and get parameters for the hyperplane
            clf = LinearSVC(random_state=0, C=1.0, fit_intercept=False, dual='auto')
            clf.fit(X, y)
            optimal_weight = clf.coef_[0].tolist()
            print('optimal weight:', optimal_weight)
            pass

        elif method == 'Greedy':
            for idx in selected.index:
                # find which score is the highest, clip, mcos, or pop
                clip_score = selected.loc[idx, 'norm_clip_crop']
                mcos_score = selected.loc[idx, 'norm_mcos_crop']
                pop_score = selected.loc[idx, 'norm_pop']
                if clip_score >= mcos_score and clip_score >= pop_score:
                    optimal_weight[0] += 1
                elif mcos_score >= clip_score and mcos_score >= pop_score:
                    optimal_weight[1] += 1
                elif pop_score >= clip_score and pop_score >= mcos_score:
                    optimal_weight[2] += 1

            # normalize optimal_weight
            optimal_weight = [round(weight/len(selected), 2) for weight in optimal_weight]
            print('optimal weight:', optimal_weight)
            print('optimal weight:', optimal_weight)

        st.session_state.score_weights[0: 3] = optimal_weight


    def remove_ranking_states(self, prompt_id):
        # for drag sort
        try:
            st.session_state.counter[prompt_id] = 0
            st.session_state.ranking[prompt_id] = {}
            print('remove ranking states')
        except:
            print('no sort ranking states to remove')

        # for battles
        try:
            st.session_state.pointer[prompt_id] = {'left': 0, 'right': 1}
            print('remove battles states')
        except:
            print('no battles states to remove')

        # for page progress
        try:
            st.session_state.progress[prompt_id] = 'ranking'
            print('reset page progress states')
        except:
            print('no page progress states to be reset')


# hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"])
@st.cache_resource
def altair_histogram(hist_data, sort_by, mini, maxi):
    brushed = alt.selection_interval(encodings=['x'], name="brushed")

    chart = (
        alt.Chart(hist_data)
        .mark_bar(opacity=0.7, cornerRadius=2)
        .encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()")
        # .add_selection(brushed)
        # .properties(width=800, height=300)
    )

    # Create a transparent rectangle for highlighting the range
    highlight = (
        alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]}))
        .mark_rect(opacity=0.3)
        .encode(x='x1', x2='x2')
        # .properties(width=800, height=300)
    )

    # Layer the chart and the highlight rectangle
    layered_chart = alt.layer(chart, highlight)

    return layered_chart


@st.cache_data
def load_hf_dataset(show_NSFW=False):
    # login to huggingface
    login(token=os.environ.get("HF_TOKEN"))

    # load from huggingface
    roster = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Roster', split='train'))
    promptBook = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Metadata', split='train'))
    # images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook'))
    images_ds = None  # set to None for now since we use s3 bucket to store images

    # # process dataset
    # roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
    #                                                    'model_download_count']].drop_duplicates().reset_index(drop=True)

    # add 'custom_score_weights' column to promptBook if not exist
    if 'weighted_score_sum' not in promptBook.columns:
        promptBook.loc[:, 'weighted_score_sum'] = 0

    # merge roster and promptbook
    promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
                                                                    on=['model_id', 'modelVersion_id'], how='left')

    # add column to record current row index
    promptBook.loc[:, 'row_idx'] = promptBook.index

    # apply a nsfw filter
    if not show_NSFW:
        promptBook = promptBook[promptBook['norm_nsfw'] <= 0.8].reset_index(drop=True)
        print('nsfw filter applied', len(promptBook))

    # add a column that adds up 'norm_clip', 'norm_mcos', and 'norm_pop'
    score_weights = [1.0, 0.8, 0.2]
    promptBook.loc[:, 'total_score'] = round(promptBook['norm_clip'] * score_weights[0] + promptBook['norm_mcos'] * score_weights[1] + promptBook['norm_pop'] * score_weights[2], 4)

    return roster, promptBook, images_ds

@st.cache_data
def load_tsne_coordinates(items):
    # load tsne coordinates
    tsne_df = pd.read_parquet('./data/feats_tsne.parquet')

    # print(tsne_df['modelVersion_id'].dtype)

    # print('before merge:', items)
    items = items.merge(tsne_df, on=['modelVersion_id', 'prompt_id'], how='left')
    # print('after merge:', items)
    return items


if __name__ == "__main__":
    st.set_page_config(page_title="Model Coffer Gallery", page_icon="🖼️", layout="wide")

    if 'user_id' not in st.session_state:
        st.warning('Please log in first.')
        home_btn = st.button('Go to Home Page')
        if home_btn:
            switch_page("home")
    else:
        # st.write('You have already logged in as ' + st.session_state.user_id[0])
        roster, promptBook, images_ds = load_hf_dataset(st.session_state.show_NSFW)
        # print(promptBook.columns)

        # # initialize selected_dict
        # if 'selected_dict' not in st.session_state:
        #     st.session_state['selected_dict'] = {}

        app = GalleryApp(promptBook=promptBook, images_ds=images_ds)
        app.app()

    with open('./css/style.css') as f:
        st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)