Spaces:
Running
Running
File size: 32,905 Bytes
fb1a1d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
import json
import os
import requests
import altair as alt
import extra_streamlit_components as stx
import numpy as np
import pandas as pd
import streamlit as st
import streamlit.components.v1 as components
from bs4 import BeautifulSoup
from datasets import load_dataset, Dataset, load_from_disk
from huggingface_hub import login
from streamlit_agraph import agraph, Node, Edge, Config
from streamlit_extras.switch_page_button import switch_page
from streamlit_extras.no_default_selectbox import selectbox
from sklearn.svm import LinearSVC
SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'msq_score', 'pop': 'model_download_count'}
class GalleryApp:
def __init__(self, promptBook, images_ds):
self.promptBook = promptBook
self.images_ds = images_ds
# init gallery state
if 'gallery_state' not in st.session_state:
st.session_state.gallery_state = {}
# initialize selected_dict
if 'selected_dict' not in st.session_state:
st.session_state['selected_dict'] = {}
if 'gallery_focus' not in st.session_state:
st.session_state.gallery_focus = {'tag': None, 'prompt': None}
def gallery_standard(self, items, col_num, info):
rows = len(items) // col_num + 1
containers = [st.container() for _ in range(rows)]
for idx in range(0, len(items), col_num):
row_idx = idx // col_num
with containers[row_idx]:
cols = st.columns(col_num)
for j in range(col_num):
if idx + j < len(items):
with cols[j]:
# show image
# image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image']
image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.iloc[idx + j]['image_id']}.png"
st.image(image, use_column_width=True)
# handel checkbox information
prompt_id = items.iloc[idx + j]['prompt_id']
modelVersion_id = items.iloc[idx + j]['modelVersion_id']
check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False
# st.write("Position: ", idx + j)
# show checkbox
st.checkbox('Select', key=f'select_{prompt_id}_{modelVersion_id}', value=check_init)
# show selected info
for key in info:
st.write(f"**{key}**: {items.iloc[idx + j][key]}")
def gallery_graph(self, items):
items = load_tsne_coordinates(items)
# sort items to be popularity from low to high, so that most popular ones will be on the top
items = items.sort_values(by=['model_download_count'], ascending=True).reset_index(drop=True)
scale = 50
items.loc[:, 'x'] = items['x'] * scale
items.loc[:, 'y'] = items['y'] * scale
nodes = []
edges = []
for idx in items.index:
# if items.loc[idx, 'modelVersion_id'] in st.session_state.selected_dict.get(items.loc[idx, 'prompt_id'], 0):
# opacity = 0.2
# else:
# opacity = 1.0
nodes.append(Node(id=items.loc[idx, 'image_id'],
# label=str(items.loc[idx, 'model_name']),
title=f"model name: {items.loc[idx, 'model_name']}\nmodelVersion name: {items.loc[idx, 'modelVersion_name']}\nclip score: {items.loc[idx, 'clip_score']}\nmcos score: {items.loc[idx, 'mcos_score']}\npopularity: {items.loc[idx, 'model_download_count']}",
size=20,
shape='image',
image=f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.loc[idx, 'image_id']}.png",
x=items.loc[idx, 'x'].item(),
y=items.loc[idx, 'y'].item(),
# fixed=True,
color={'background': '#E0E0E1', 'border': '#ffffff', 'highlight': {'border': '#F04542'}},
# opacity=opacity,
shadow={'enabled': True, 'color': 'rgba(0,0,0,0.4)', 'size': 10, 'x': 1, 'y': 1},
borderWidth=2,
shapeProperties={'useBorderWithImage': True},
)
)
config = Config(width='100%',
height='600',
directed=True,
physics=False,
hierarchical=False,
interaction={'navigationButtons': True, 'dragNodes': False, 'multiselect': False},
# **kwargs
)
return agraph(nodes=nodes,
edges=edges,
config=config,
)
def selection_panel(self, items):
# temperal function
selecters = st.columns([1, 4])
if 'score_weights' not in st.session_state:
# st.session_state.score_weights = [1.0, 0.8, 0.2, 0.8]
st.session_state.score_weights = [1.0, 0.8, 0.2]
# select sort type
with selecters[0]:
sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names'])
if sort_type == 'Scores':
sort_by = 'weighted_score_sum'
# select other options
with selecters[1]:
if sort_type == 'IDs and Names':
sub_selecters = st.columns([3])
# select sort by
with sub_selecters[0]:
sort_by = st.selectbox('Sort by',
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', 'norm_nsfw'],
label_visibility='hidden')
continue_idx = 1
else:
# add custom weights
sub_selecters = st.columns([1, 1, 1])
with sub_selecters[0]:
clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=1.0, step=0.1, help='the weight for normalized clip score')
with sub_selecters[1]:
mcos_weight = st.number_input('Dissimilarity Weight', min_value=-100.0, max_value=100.0, value=0.8, step=0.1, help='the weight for m(eam) s(imilarity) q(antile) score for measuring distinctiveness')
with sub_selecters[2]:
pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=0.2, step=0.1, help='the weight for normalized popularity score')
items.loc[:, 'weighted_score_sum'] = round(items[f'norm_clip'] * clip_weight + items[f'norm_mcos'] * mcos_weight + items[
'norm_pop'] * pop_weight, 4)
continue_idx = 3
# save latest weights
st.session_state.score_weights[0] = round(clip_weight, 2)
st.session_state.score_weights[1] = round(mcos_weight, 2)
st.session_state.score_weights[2] = round(pop_weight, 2)
# # select threshold
# with sub_selecters[continue_idx]:
# nsfw_threshold = st.number_input('NSFW Score Threshold', min_value=0.0, max_value=1.0, value=0.8, step=0.01, help='Only show models with nsfw score lower than this threshold, set 1.0 to show all images')
# items = items[items['norm_nsfw'] <= nsfw_threshold].reset_index(drop=True)
#
# # save latest threshold
# st.session_state.score_weights[3] = nsfw_threshold
# # draw a distribution histogram
# if sort_type == 'Scores':
# try:
# with st.expander('Show score distribution histogram and select score range'):
# st.write('**Score distribution histogram**')
# chart_space = st.container()
# # st.write('Select the range of scores to show')
# hist_data = pd.DataFrame(items[sort_by])
# mini = hist_data[sort_by].min().item()
# mini = mini//0.1 * 0.1
# maxi = hist_data[sort_by].max().item()
# maxi = maxi//0.1 * 0.1 + 0.1
# st.write('**Select the range of scores to show**')
# r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed')
# with chart_space:
# st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True)
# # event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by))
# # r = event_dict.get(sort_by)
# if r:
# items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True)
# # st.write(r)
# except:
# pass
display_options = st.columns([1, 4])
with display_options[0]:
# select order
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0)
if order == 'Ascending':
order = True
else:
order = False
with display_options[1]:
# select info to show
info = st.multiselect('Show Info',
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id',
'weighted_score_sum', 'model_download_count', 'clip_score', 'mcos_score',
'nsfw_score', 'norm_nsfw'],
default=sort_by)
# apply sorting to dataframe
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)
# select number of columns
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')
return items, info, col_num
def sidebar(self, items, prompt_id, note):
with st.sidebar:
# prompt_tags = self.promptBook['tag'].unique()
# # sort tags by alphabetical order
# prompt_tags = np.sort(prompt_tags)[::1]
#
# tag = st.selectbox('Select a tag', prompt_tags, index=5)
#
# items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
#
# prompts = np.sort(items['prompt'].unique())[::1]
#
# selected_prompt = st.selectbox('Select prompt', prompts, index=3)
# mode = st.radio('Select a mode', ['Gallery', 'Graph'], horizontal=True, index=1)
# items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
# st.title('Model Visualization and Retrieval')
# show source
if isinstance(note, str):
if note.isdigit():
st.caption(f"`Source: civitai`")
else:
st.caption(f"`Source: {note}`")
else:
st.caption("`Source: Parti-prompts`")
# show image metadata
image_metadatas = ['prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed']
for key in image_metadatas:
label = ' '.join(key.split('_')).capitalize()
st.write(f"**{label}**")
if items[key][0] == ' ':
st.write('`None`')
else:
st.caption(f"{items[key][0]}")
# for note as civitai image id, add civitai reference
if isinstance(note, str) and note.isdigit():
try:
st.write(f'**[Civitai Reference](https://civitai.com/images/{note})**')
res = requests.get(f'https://civitai.com/images/{note}')
# st.write(res.text)
soup = BeautifulSoup(res.text, 'html.parser')
image_section = soup.find('div', {'class': 'mantine-12rlksp'})
image_url = image_section.find('img')['src']
st.image(image_url, use_column_width=True)
except:
pass
# return prompt_tags, tag, prompt_id, items
def app(self):
st.write('### Model Visualization and Retrieval')
# st.write('This is a gallery of images generated by the models')
# build the tabular view
prompt_tags = self.promptBook['tag'].unique()
# sort tags by alphabetical order
prompt_tags = np.sort(prompt_tags)[::1].tolist()
# chosen_data = [stx.TabBarItemData(id=tag, title=tag, description='') for tag in prompt_tags]
# tag = stx.tab_bar(chosen_data, key='tag', default='food')
# save tag to session state on change
tag = st.radio('Select a tag', prompt_tags, index=5, horizontal=True, key='tag', label_visibility='collapsed')
# tabs = st.tabs(prompt_tags)
# for i in range(len(prompt_tags)):
# with tabs[i]:
# tag = prompt_tags[i]
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
prompts = np.sort(items['prompt'].unique())[::1].tolist()
# st.caption('Select a prompt')
subset_selector = st.columns([3, 1])
with subset_selector[0]:
selected_prompt = selectbox('Select prompt', prompts, key=f'prompt_{tag}', no_selection_label='---', label_visibility='collapsed', index=0)
# st.session_state.prompt_idx_last_time = prompts.index(selected_prompt) if selected_prompt else 0
if selected_prompt is None:
# st.markdown(':orange[Please select a prompt above👆]')
st.write('**Feel free to navigate among tags and pages! Your selection will be saved within one log-in session.**')
with subset_selector[-1]:
st.write(':orange[👈 **Please select a prompt**]')
else:
items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
prompt_id = items['prompt_id'].unique()[0]
note = items['note'].unique()[0]
# add state to session state
if prompt_id not in st.session_state.gallery_state:
st.session_state.gallery_state[prompt_id] = 'graph'
# add focus to session state
st.session_state.gallery_focus['tag'] = tag
st.session_state.gallery_focus['prompt'] = selected_prompt
# add safety check for some prompts
safety_check = True
# load unsafe prompts
unsafe_prompts = json.load(open('./data/unsafe_prompts.json', 'r'))
for prompt_tag in prompt_tags:
if prompt_tag not in unsafe_prompts:
unsafe_prompts[prompt_tag] = []
# # manually add unsafe prompts
# unsafe_prompts['world knowledge'] = [83]
# unsafe_prompts['abstract'] = [1, 3]
if int(prompt_id.item()) in unsafe_prompts[tag]:
st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.')
safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'safety_{prompt_id}')
print('current state: ', st.session_state.gallery_state[prompt_id])
if st.session_state.gallery_state[prompt_id] == 'graph':
if safety_check:
self.graph_mode(prompt_id, items)
with subset_selector[-1]:
has_selection = False
try:
if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
has_selection = True
except:
pass
if has_selection:
checkout = st.button('Check out selections', use_container_width=True, type='primary')
if checkout:
print('checkout')
st.session_state.gallery_state[prompt_id] = 'gallery'
print(st.session_state.gallery_state[prompt_id])
st.experimental_rerun()
else:
st.write(':orange[👇 **Select images you like below**]')
elif st.session_state.gallery_state[prompt_id] == 'gallery':
items = items[items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(
drop=True)
self.gallery_mode(prompt_id, items)
with subset_selector[-1]:
state_operations = st.columns([1, 1])
with state_operations[0]:
back = st.button('Back to 🖼️', use_container_width=True)
if back:
st.session_state.gallery_state[prompt_id] = 'graph'
st.experimental_rerun()
with state_operations[1]:
forward = st.button('Check out', use_container_width=True, type='primary', on_click=self.submit_actions, args=('Continue', prompt_id))
if forward:
switch_page('ranking')
try:
self.sidebar(items, prompt_id, note)
except:
pass
def graph_mode(self, prompt_id, items):
graph_cols = st.columns([3, 1])
# prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}",
# disabled=False, key=f'{prompt_id}')
# if prompt:
# switch_page("ranking")
with graph_cols[0]:
graph_space = st.empty()
with graph_space.container():
return_value = self.gallery_graph(items)
with graph_cols[1]:
if return_value:
with st.form(key=f'{prompt_id}'):
image_url = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{return_value}.png"
st.image(image_url)
item = items[items['image_id'] == return_value].reset_index(drop=True).iloc[0]
modelVersion_id = item['modelVersion_id']
# handle selection
if 'selected_dict' in st.session_state:
if item['prompt_id'] not in st.session_state.selected_dict:
st.session_state.selected_dict[item['prompt_id']] = []
if modelVersion_id in st.session_state.selected_dict[item['prompt_id']]:
checked = True
else:
checked = False
if checked:
# deselect = st.button('Deselect', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True)
deselect = st.form_submit_button('Deselect', use_container_width=True)
if deselect:
st.session_state.selected_dict[item['prompt_id']].remove(item['modelVersion_id'])
self.remove_ranking_states(item['prompt_id'])
st.experimental_rerun()
else:
# select = st.button('Select', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True, type='primary')
select = st.form_submit_button('Select', use_container_width=True, type='primary')
if select:
st.session_state.selected_dict[item['prompt_id']].append(item['modelVersion_id'])
self.remove_ranking_states(item['prompt_id'])
st.experimental_rerun()
# st.write(item)
infos = ['model_name', 'modelVersion_name', 'model_download_count', 'clip_score', 'mcos_score',
'nsfw_score']
infos_df = item[infos]
# rename columns
infos_df = infos_df.rename(index={'model_name': 'Model', 'modelVersion_name': 'Version', 'model_download_count': 'Downloads', 'clip_score': 'Clip Score', 'mcos_score': 'mcos Score', 'nsfw_score': 'NSFW Score'})
st.table(infos_df)
# for info in infos:
# st.write(f"**{info}**:")
# st.write(item[info])
else:
st.info('Please click on an image to show')
def gallery_mode(self, prompt_id, items):
items, info, col_num = self.selection_panel(items)
# if 'selected_dict' in st.session_state:
# # st.write('checked: ', str(st.session_state.selected_dict.get(prompt_id, [])))
# dynamic_weight_options = ['Grid Search', 'SVM', 'Greedy']
# dynamic_weight_panel = st.columns(len(dynamic_weight_options))
#
# if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
# btn_disable = False
# else:
# btn_disable = True
#
# for i in range(len(dynamic_weight_options)):
# method = dynamic_weight_options[i]
# with dynamic_weight_panel[i]:
# btn = st.button(method, use_container_width=True, disabled=btn_disable, on_click=self.dynamic_weight, args=(prompt_id, items, method))
# prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}", disabled=False, key=f'{prompt_id}')
# if prompt:
# switch_page("ranking")
# with st.form(key=f'{prompt_id}'):
# buttons = st.columns([1, 1, 1])
# buttons_space = st.columns([1, 1, 1])
gallery_space = st.empty()
# with buttons_space[0]:
# continue_btn = st.button('Proceed selections to ranking', use_container_width=True, type='primary')
# if continue_btn:
# # self.submit_actions('Continue', prompt_id)
# switch_page("ranking")
#
# with buttons_space[1]:
# deselect_btn = st.button('Deselect All', use_container_width=True)
# if deselect_btn:
# self.submit_actions('Deselect', prompt_id)
#
# with buttons_space[2]:
# refresh_btn = st.button('Refresh', on_click=gallery_space.empty, use_container_width=True)
with gallery_space.container():
self.gallery_standard(items, col_num, info)
def submit_actions(self, status, prompt_id):
# remove counter from session state
# st.session_state.pop('counter', None)
self.remove_ranking_states('prompt_id')
if status == 'Select':
modelVersions = self.promptBook[self.promptBook['prompt_id'] == prompt_id]['modelVersion_id'].unique()
st.session_state.selected_dict[prompt_id] = modelVersions.tolist()
print(st.session_state.selected_dict, 'select')
st.experimental_rerun()
elif status == 'Deselect':
st.session_state.selected_dict[prompt_id] = []
print(st.session_state.selected_dict, 'deselect')
st.experimental_rerun()
# self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False
elif status == 'Continue':
st.session_state.selected_dict[prompt_id] = []
for key in st.session_state:
keys = key.split('_')
if keys[0] == 'select' and keys[1] == str(prompt_id):
if st.session_state[key]:
st.session_state.selected_dict[prompt_id].append(int(keys[2]))
# switch_page("ranking")
print(st.session_state.selected_dict, 'continue')
# st.experimental_rerun()
def dynamic_weight(self, prompt_id, items, method='Grid Search'):
selected = items[
items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(drop=True)
optimal_weight = [0, 0, 0]
if method == 'Grid Search':
# grid search method
top_ranking = len(items) * len(selected)
for clip_weight in np.arange(-1, 1, 0.1):
for mcos_weight in np.arange(-1, 1, 0.1):
for pop_weight in np.arange(-1, 1, 0.1):
weight_all = clip_weight*items[f'norm_clip'] + mcos_weight*items[f'norm_mcos'] + pop_weight*items['norm_pop']
weight_all_sorted = weight_all.sort_values(ascending=False).reset_index(drop=True)
# print('weight_all_sorted:', weight_all_sorted)
weight_selected = clip_weight*selected[f'norm_clip'] + mcos_weight*selected[f'norm_mcos'] + pop_weight*selected['norm_pop']
# get the index of values of weight_selected in weight_all_sorted
rankings = []
for weight in weight_selected:
rankings.append(weight_all_sorted.index[weight_all_sorted == weight].tolist()[0])
if sum(rankings) <= top_ranking:
top_ranking = sum(rankings)
print('current top ranking:', top_ranking, rankings)
optimal_weight = [clip_weight, mcos_weight, pop_weight]
print('optimal weight:', optimal_weight)
elif method == 'SVM':
# svm method
print('start svm method')
# get residual dataframe that contains models not selected
residual = items[~items['modelVersion_id'].isin(selected['modelVersion_id'])].reset_index(drop=True)
residual = residual[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
residual = residual.to_numpy()
selected = selected[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
selected = selected.to_numpy()
y = np.concatenate((np.full((len(selected), 1), -1), np.full((len(residual), 1), 1)), axis=0).ravel()
X = np.concatenate((selected, residual), axis=0)
# fit svm model, and get parameters for the hyperplane
clf = LinearSVC(random_state=0, C=1.0, fit_intercept=False, dual='auto')
clf.fit(X, y)
optimal_weight = clf.coef_[0].tolist()
print('optimal weight:', optimal_weight)
pass
elif method == 'Greedy':
for idx in selected.index:
# find which score is the highest, clip, mcos, or pop
clip_score = selected.loc[idx, 'norm_clip_crop']
mcos_score = selected.loc[idx, 'norm_mcos_crop']
pop_score = selected.loc[idx, 'norm_pop']
if clip_score >= mcos_score and clip_score >= pop_score:
optimal_weight[0] += 1
elif mcos_score >= clip_score and mcos_score >= pop_score:
optimal_weight[1] += 1
elif pop_score >= clip_score and pop_score >= mcos_score:
optimal_weight[2] += 1
# normalize optimal_weight
optimal_weight = [round(weight/len(selected), 2) for weight in optimal_weight]
print('optimal weight:', optimal_weight)
print('optimal weight:', optimal_weight)
st.session_state.score_weights[0: 3] = optimal_weight
def remove_ranking_states(self, prompt_id):
# for drag sort
try:
st.session_state.counter[prompt_id] = 0
st.session_state.ranking[prompt_id] = {}
print('remove ranking states')
except:
print('no sort ranking states to remove')
# for battles
try:
st.session_state.pointer[prompt_id] = {'left': 0, 'right': 1}
print('remove battles states')
except:
print('no battles states to remove')
# for page progress
try:
st.session_state.progress[prompt_id] = 'ranking'
print('reset page progress states')
except:
print('no page progress states to be reset')
# hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"])
@st.cache_resource
def altair_histogram(hist_data, sort_by, mini, maxi):
brushed = alt.selection_interval(encodings=['x'], name="brushed")
chart = (
alt.Chart(hist_data)
.mark_bar(opacity=0.7, cornerRadius=2)
.encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()")
# .add_selection(brushed)
# .properties(width=800, height=300)
)
# Create a transparent rectangle for highlighting the range
highlight = (
alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]}))
.mark_rect(opacity=0.3)
.encode(x='x1', x2='x2')
# .properties(width=800, height=300)
)
# Layer the chart and the highlight rectangle
layered_chart = alt.layer(chart, highlight)
return layered_chart
@st.cache_data
def load_hf_dataset(show_NSFW=False):
# login to huggingface
login(token=os.environ.get("HF_TOKEN"))
# load from huggingface
roster = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Roster', split='train'))
promptBook = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Metadata', split='train'))
# images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook'))
images_ds = None # set to None for now since we use s3 bucket to store images
# # process dataset
# roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
# 'model_download_count']].drop_duplicates().reset_index(drop=True)
# add 'custom_score_weights' column to promptBook if not exist
if 'weighted_score_sum' not in promptBook.columns:
promptBook.loc[:, 'weighted_score_sum'] = 0
# merge roster and promptbook
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
on=['model_id', 'modelVersion_id'], how='left')
# add column to record current row index
promptBook.loc[:, 'row_idx'] = promptBook.index
# apply a nsfw filter
if not show_NSFW:
promptBook = promptBook[promptBook['norm_nsfw'] <= 0.8].reset_index(drop=True)
print('nsfw filter applied', len(promptBook))
# add a column that adds up 'norm_clip', 'norm_mcos', and 'norm_pop'
score_weights = [1.0, 0.8, 0.2]
promptBook.loc[:, 'total_score'] = round(promptBook['norm_clip'] * score_weights[0] + promptBook['norm_mcos'] * score_weights[1] + promptBook['norm_pop'] * score_weights[2], 4)
return roster, promptBook, images_ds
@st.cache_data
def load_tsne_coordinates(items):
# load tsne coordinates
tsne_df = pd.read_parquet('./data/feats_tsne.parquet')
# print(tsne_df['modelVersion_id'].dtype)
# print('before merge:', items)
items = items.merge(tsne_df, on=['modelVersion_id', 'prompt_id'], how='left')
# print('after merge:', items)
return items
if __name__ == "__main__":
st.set_page_config(page_title="Model Coffer Gallery", page_icon="🖼️", layout="wide")
if 'user_id' not in st.session_state:
st.warning('Please log in first.')
home_btn = st.button('Go to Home Page')
if home_btn:
switch_page("home")
else:
# st.write('You have already logged in as ' + st.session_state.user_id[0])
roster, promptBook, images_ds = load_hf_dataset(st.session_state.show_NSFW)
# print(promptBook.columns)
# # initialize selected_dict
# if 'selected_dict' not in st.session_state:
# st.session_state['selected_dict'] = {}
app = GalleryApp(promptBook=promptBook, images_ds=images_ds)
app.app()
with open('./css/style.css') as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|