Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import altair as alt | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from bs4 import BeautifulSoup | |
from datasets import load_dataset, Dataset, load_from_disk | |
from huggingface_hub import login | |
from streamlit_extras.switch_page_button import switch_page | |
from sklearn.svm import LinearSVC | |
SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'msq_score', 'pop': 'model_download_count'} | |
class GalleryApp: | |
def __init__(self, promptBook, images_ds): | |
self.promptBook = promptBook | |
self.images_ds = images_ds | |
def gallery_standard(self, items, col_num, info): | |
rows = len(items) // col_num + 1 | |
containers = [st.container() for _ in range(rows)] | |
for idx in range(0, len(items), col_num): | |
row_idx = idx // col_num | |
with containers[row_idx]: | |
cols = st.columns(col_num) | |
for j in range(col_num): | |
if idx + j < len(items): | |
with cols[j]: | |
# show image | |
# image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image'] | |
# image = f"https://modelcofferbucket.s3.us-east-2.amazonaws.com/{items.iloc[idx + j]['image_id']}.png" | |
image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.iloc[idx + j]['image_id']}.png" | |
st.image(image, use_column_width=True) | |
# handel checkbox information | |
prompt_id = items.iloc[idx + j]['prompt_id'] | |
modelVersion_id = items.iloc[idx + j]['modelVersion_id'] | |
check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False | |
st.write("Position: ", idx + j) | |
# show checkbox | |
st.checkbox('Select', key=f'select_{prompt_id}_{modelVersion_id}', value=check_init) | |
# show selected info | |
for key in info: | |
st.write(f"**{key}**: {items.iloc[idx + j][key]}") | |
def selection_panel(self, items): | |
# temperal function | |
selecters = st.columns([1, 4]) | |
if 'score_weights' not in st.session_state: | |
st.session_state.score_weights = [1.0, 0.8, 0.2, 0.8] | |
# select sort type | |
with selecters[0]: | |
sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names']) | |
if sort_type == 'Scores': | |
sort_by = 'weighted_score_sum' | |
# select other options | |
with selecters[1]: | |
if sort_type == 'IDs and Names': | |
sub_selecters = st.columns([3, 1]) | |
# select sort by | |
with sub_selecters[0]: | |
sort_by = st.selectbox('Sort by', | |
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', 'norm_nsfw'], | |
label_visibility='hidden') | |
continue_idx = 1 | |
else: | |
# add custom weights | |
sub_selecters = st.columns([1, 1, 1, 1]) | |
with sub_selecters[0]: | |
clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[0], step=0.1, help='the weight for normalized clip score') | |
with sub_selecters[1]: | |
mcos_weight = st.number_input('Dissimilarity Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[1], step=0.1, help='the weight for m(eam) s(imilarity) q(antile) score for measuring distinctiveness') | |
with sub_selecters[2]: | |
pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=st.session_state.score_weights[2], step=0.1, help='the weight for normalized popularity score') | |
items.loc[:, 'weighted_score_sum'] = round(items[f'norm_clip'] * clip_weight + items[f'norm_mcos'] * mcos_weight + items[ | |
'norm_pop'] * pop_weight, 4) | |
continue_idx = 3 | |
# save latest weights | |
st.session_state.score_weights[0] = clip_weight | |
st.session_state.score_weights[1] = mcos_weight | |
st.session_state.score_weights[2] = pop_weight | |
# select threshold | |
with sub_selecters[continue_idx]: | |
nsfw_threshold = st.number_input('NSFW Score Threshold', min_value=0.0, max_value=1.0, value=st.session_state.score_weights[3], step=0.01, help='Only show models with nsfw score lower than this threshold, set 1.0 to show all images') | |
items = items[items['norm_nsfw'] <= nsfw_threshold].reset_index(drop=True) | |
# save latest threshold | |
st.session_state.score_weights[3] = nsfw_threshold | |
# draw a distribution histogram | |
if sort_type == 'Scores': | |
try: | |
with st.expander('Show score distribution histogram and select score range'): | |
st.write('**Score distribution histogram**') | |
chart_space = st.container() | |
# st.write('Select the range of scores to show') | |
hist_data = pd.DataFrame(items[sort_by]) | |
mini = hist_data[sort_by].min().item() | |
mini = mini//0.1 * 0.1 | |
maxi = hist_data[sort_by].max().item() | |
maxi = maxi//0.1 * 0.1 + 0.1 | |
st.write('**Select the range of scores to show**') | |
r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed') | |
with chart_space: | |
st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True) | |
# event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by)) | |
# r = event_dict.get(sort_by) | |
if r: | |
items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True) | |
# st.write(r) | |
except: | |
pass | |
display_options = st.columns([1, 4]) | |
with display_options[0]: | |
# select order | |
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0) | |
if order == 'Ascending': | |
order = True | |
else: | |
order = False | |
with display_options[1]: | |
# select info to show | |
info = st.multiselect('Show Info', | |
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', | |
'weighted_score_sum', 'model_download_count', 'clip_score', 'mcos_score', | |
'nsfw_score', 'norm_nsfw'], | |
default=sort_by) | |
# apply sorting to dataframe | |
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True) | |
# select number of columns | |
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num') | |
return items, info, col_num | |
def sidebar(self): | |
with st.sidebar: | |
prompt_tags = self.promptBook['tag'].unique() | |
# sort tags by alphabetical order | |
prompt_tags = np.sort(prompt_tags)[::-1] | |
tag = st.selectbox('Select a tag', prompt_tags) | |
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True) | |
prompts = np.sort(items['prompt'].unique())[::-1] | |
selected_prompt = st.selectbox('Select prompt', prompts) | |
items = items[items['prompt'] == selected_prompt].reset_index(drop=True) | |
prompt_id = items['prompt_id'].unique()[0] | |
note = items['note'].unique()[0] | |
# show source | |
if isinstance(note, str): | |
if note.isdigit(): | |
st.caption(f"`Source: civitai`") | |
else: | |
st.caption(f"`Source: {note}`") | |
else: | |
st.caption("`Source: Parti-prompts`") | |
# show image metadata | |
image_metadatas = ['prompt_id', 'prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed'] | |
for key in image_metadatas: | |
label = ' '.join(key.split('_')).capitalize() | |
st.write(f"**{label}**") | |
if items[key][0] == ' ': | |
st.write('`None`') | |
else: | |
st.caption(f"{items[key][0]}") | |
# for note as civitai image id, add civitai reference | |
if isinstance(note, str) and note.isdigit(): | |
try: | |
st.write(f'**[Civitai Reference](https://civitai.com/images/{note})**') | |
res = requests.get(f'https://civitai.com/images/{note}') | |
# st.write(res.text) | |
soup = BeautifulSoup(res.text, 'html.parser') | |
image_section = soup.find('div', {'class': 'mantine-12rlksp'}) | |
image_url = image_section.find('img')['src'] | |
st.image(image_url, use_column_width=True) | |
except: | |
pass | |
return prompt_tags, tag, prompt_id, items | |
def app(self): | |
st.title('Model Visualization and Retrieval') | |
st.write('This is a gallery of images generated by the models') | |
prompt_tags, tag, prompt_id, items = self.sidebar() | |
# add safety check for some prompts | |
safety_check = True | |
unsafe_prompts = {} | |
# initialize unsafe prompts | |
for prompt_tag in prompt_tags: | |
unsafe_prompts[prompt_tag] = [] | |
# manually add unsafe prompts | |
unsafe_prompts['world knowledge'] = [83] | |
# unsafe_prompts['art'] = [23] | |
unsafe_prompts['abstract'] = [1, 3] | |
# unsafe_prompts['food'] = [34] | |
if int(prompt_id.item()) in unsafe_prompts[tag]: | |
st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.') | |
safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'{prompt_id}') | |
if safety_check: | |
items, info, col_num = self.selection_panel(items) | |
if 'selected_dict' in st.session_state: | |
st.write('checked: ', str(st.session_state.selected_dict.get(prompt_id, []))) | |
dynamic_weight_options = ['Grid Search', 'SVM', 'Greedy'] | |
dynamic_weight_panel = st.columns(len(dynamic_weight_options)) | |
if len(st.session_state.selected_dict.get(prompt_id, [])) > 0: | |
btn_disable = False | |
else: | |
btn_disable = True | |
for i in range(len(dynamic_weight_options)): | |
method = dynamic_weight_options[i] | |
with dynamic_weight_panel[i]: | |
btn = st.button(method, use_container_width=True, disabled=btn_disable, on_click=self.dynamic_weight, args=(prompt_id, items, method)) | |
with st.form(key=f'{prompt_id}'): | |
# buttons = st.columns([1, 1, 1]) | |
buttons_space = st.columns([1, 1, 1, 1]) | |
gallery_space = st.empty() | |
with buttons_space[0]: | |
continue_btn = st.form_submit_button('Confirm Selection', use_container_width=True, type='primary') | |
if continue_btn: | |
self.submit_actions('Continue', prompt_id) | |
with buttons_space[1]: | |
select_btn = st.form_submit_button('Select All', use_container_width=True) | |
if select_btn: | |
self.submit_actions('Select', prompt_id) | |
with buttons_space[2]: | |
deselect_btn = st.form_submit_button('Deselect All', use_container_width=True) | |
if deselect_btn: | |
self.submit_actions('Deselect', prompt_id) | |
with buttons_space[3]: | |
refresh_btn = st.form_submit_button('Refresh', on_click=gallery_space.empty, use_container_width=True) | |
with gallery_space.container(): | |
with st.spinner('Loading images...'): | |
self.gallery_standard(items, col_num, info) | |
def submit_actions(self, status, prompt_id): | |
if status == 'Select': | |
modelVersions = self.promptBook[self.promptBook['prompt_id'] == prompt_id]['modelVersion_id'].unique() | |
st.session_state.selected_dict[prompt_id] = modelVersions.tolist() | |
print(st.session_state.selected_dict, 'select') | |
st.experimental_rerun() | |
elif status == 'Deselect': | |
st.session_state.selected_dict[prompt_id] = [] | |
print(st.session_state.selected_dict, 'deselect') | |
st.experimental_rerun() | |
# self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False | |
elif status == 'Continue': | |
st.session_state.selected_dict[prompt_id] = [] | |
for key in st.session_state: | |
keys = key.split('_') | |
if keys[0] == 'select' and keys[1] == str(prompt_id): | |
if st.session_state[key]: | |
st.session_state.selected_dict[prompt_id].append(int(keys[2])) | |
# switch_page("ranking") | |
print(st.session_state.selected_dict, 'continue') | |
st.experimental_rerun() | |
def dynamic_weight(self, prompt_id, items, method='Grid Search'): | |
selected = items[ | |
items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(drop=True) | |
optimal_weight = [0, 0, 0] | |
if method == 'Grid Search': | |
# grid search method | |
top_ranking = len(items) * len(selected) | |
for clip_weight in np.arange(-1, 1, 0.1): | |
for mcos_weight in np.arange(-1, 1, 0.1): | |
for pop_weight in np.arange(-1, 1, 0.1): | |
weight_all = clip_weight*items[f'norm_clip'] + mcos_weight*items[f'norm_mcos'] + pop_weight*items['norm_pop'] | |
weight_all_sorted = weight_all.sort_values(ascending=False).reset_index(drop=True) | |
# print('weight_all_sorted:', weight_all_sorted) | |
weight_selected = clip_weight*selected[f'norm_clip'] + mcos_weight*selected[f'norm_mcos'] + pop_weight*selected['norm_pop'] | |
# get the index of values of weight_selected in weight_all_sorted | |
rankings = [] | |
for weight in weight_selected: | |
rankings.append(weight_all_sorted.index[weight_all_sorted == weight].tolist()[0]) | |
if sum(rankings) <= top_ranking: | |
top_ranking = sum(rankings) | |
print('current top ranking:', top_ranking, rankings) | |
optimal_weight = [clip_weight, mcos_weight, pop_weight] | |
print('optimal weight:', optimal_weight) | |
elif method == 'SVM': | |
# svm method | |
print('start svm method') | |
# get residual dataframe that contains models not selected | |
residual = items[~items['modelVersion_id'].isin(selected['modelVersion_id'])].reset_index(drop=True) | |
residual = residual[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']] | |
residual = residual.to_numpy() | |
selected = selected[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']] | |
selected = selected.to_numpy() | |
y = np.concatenate((np.full((len(selected), 1), -1), np.full((len(residual), 1), 1)), axis=0).ravel() | |
X = np.concatenate((selected, residual), axis=0) | |
# fit svm model, and get parameters for the hyperplane | |
clf = LinearSVC(random_state=0, C=1.0, fit_intercept=False, dual='auto') | |
clf.fit(X, y) | |
optimal_weight = clf.coef_[0].tolist() | |
print('optimal weight:', optimal_weight) | |
pass | |
elif method == 'Greedy': | |
for idx in selected.index: | |
# find which score is the highest, clip, mcos, or pop | |
clip_score = selected.loc[idx, 'norm_clip_crop'] | |
mcos_score = selected.loc[idx, 'norm_mcos_crop'] | |
pop_score = selected.loc[idx, 'norm_pop'] | |
if clip_score >= mcos_score and clip_score >= pop_score: | |
optimal_weight[0] += 1 | |
elif mcos_score >= clip_score and mcos_score >= pop_score: | |
optimal_weight[1] += 1 | |
elif pop_score >= clip_score and pop_score >= mcos_score: | |
optimal_weight[2] += 1 | |
# normalize optimal_weight | |
optimal_weight = [round(weight/len(selected), 2) for weight in optimal_weight] | |
print('optimal weight:', optimal_weight) | |
st.session_state.score_weights[0: 3] = optimal_weight | |
# hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"]) | |
def altair_histogram(hist_data, sort_by, mini, maxi): | |
brushed = alt.selection_interval(encodings=['x'], name="brushed") | |
chart = ( | |
alt.Chart(hist_data) | |
.mark_bar(opacity=0.7, cornerRadius=2) | |
.encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()") | |
# .add_selection(brushed) | |
# .properties(width=800, height=300) | |
) | |
# Create a transparent rectangle for highlighting the range | |
highlight = ( | |
alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]})) | |
.mark_rect(opacity=0.3) | |
.encode(x='x1', x2='x2') | |
# .properties(width=800, height=300) | |
) | |
# Layer the chart and the highlight rectangle | |
layered_chart = alt.layer(chart, highlight) | |
return layered_chart | |
def load_hf_dataset(): | |
# login to huggingface | |
login(token=os.environ.get("HF_TOKEN")) | |
# load from huggingface | |
roster = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferRoster', split='train')) | |
promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferMetadata', split='train')) | |
# images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook')) | |
images_ds = None # set to None for now since we use s3 bucket to store images | |
# process dataset | |
roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', | |
'model_download_count']].drop_duplicates().reset_index(drop=True) | |
# add 'custom_score_weights' column to promptBook if not exist | |
if 'weighted_score_sum' not in promptBook.columns: | |
promptBook.loc[:, 'weighted_score_sum'] = 0 | |
# merge roster and promptbook | |
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']], | |
on=['model_id', 'modelVersion_id'], how='left') | |
# add column to record current row index | |
promptBook.loc[:, 'row_idx'] = promptBook.index | |
return roster, promptBook, images_ds | |
if __name__ == "__main__": | |
st.set_page_config(page_title="Model Coffer Gallery", page_icon="🖼️", layout="wide") | |
# remove ranking in the session state if it is created in Ranking.py | |
st.session_state.pop('ranking', None) | |
if 'user_id' not in st.session_state: | |
st.warning('Please log in first.') | |
home_btn = st.button('Go to Home Page') | |
if home_btn: | |
switch_page("home") | |
else: | |
st.write('You have already logged in as ' + st.session_state.user_id[0]) | |
roster, promptBook, images_ds = load_hf_dataset() | |
# print(promptBook.columns) | |
# initialize selected_dict | |
if 'selected_dict' not in st.session_state: | |
st.session_state['selected_dict'] = {} | |
app = GalleryApp(promptBook=promptBook, images_ds=images_ds) | |
app.app() | |