Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621) | |
# Github source: https://github.com/mbzuai-nlp/ArTST | |
# Based on speecht5, fairseq and espnet code bases | |
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet | |
# -------------------------------------------------------- | |
import itertools | |
import logging | |
import os | |
import sys | |
from typing import Any, List, Optional, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import librosa | |
from fairseq.data.audio.speech_to_text_dataset import get_features_or_waveform | |
from fairseq.data import data_utils | |
from fairseq.data.fairseq_dataset import FairseqDataset | |
logger = logging.getLogger(__name__) | |
def _collate_frames( | |
frames: List[torch.Tensor], is_audio_input: bool = False | |
): | |
""" | |
Convert a list of 2D frames into a padded 3D tensor | |
Args: | |
frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is | |
length of i-th frame and f_dim is static dimension of features | |
Returns: | |
3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i] | |
""" | |
max_len = max(frame.size(0) for frame in frames) | |
if is_audio_input: | |
out = frames[0].new_zeros((len(frames), max_len)) | |
else: | |
out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1))) | |
for i, v in enumerate(frames): | |
out[i, : v.size(0)] = v | |
return out | |
def add_first_frame_and_remove_last_frame(ys): | |
ys_in = torch.cat( | |
[ys.new_zeros((ys.shape[0], 1, ys.shape[2])), ys[:, :-1]], dim=1 | |
) | |
return ys_in | |
def load_audio(manifest_path, max_keep, min_keep): | |
n_long, n_short = 0, 0 | |
names, inds, sizes, spk_embeds = [], [], [], [] | |
with open(manifest_path) as f: | |
root = f.readline().strip() | |
for ind, line in enumerate(f): | |
items = line.strip().split("\t") | |
assert len(items) == 3, line | |
sz = int(items[1]) | |
if min_keep is not None and sz < min_keep: | |
n_short += 1 | |
elif max_keep is not None and sz > max_keep: | |
n_long += 1 | |
else: | |
names.append(items[0]) | |
spk_embeds.append(items[2]) | |
inds.append(ind) | |
sizes.append(sz) | |
tot = ind + 1 | |
logger.info( | |
( | |
f"max_keep={max_keep}, min_keep={min_keep}, " | |
f"loaded {len(names)}, skipped {n_short} short and {n_long} long, " | |
f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}" | |
) | |
) | |
return root, names, inds, tot, sizes, spk_embeds | |
def load_label(label_path, inds, tot): | |
with open(label_path) as f: | |
labels = [line.rstrip() for line in f] | |
assert ( | |
len(labels) == tot | |
), f"number of labels does not match ({len(labels)} != {tot})" | |
labels = [labels[i] for i in inds] | |
return labels | |
def load_label_offset(label_path, inds, tot): | |
with open(label_path) as f: | |
code_lengths = [len(line.encode("utf-8")) for line in f] | |
assert ( | |
len(code_lengths) == tot | |
), f"number of labels does not match ({len(code_lengths)} != {tot})" | |
offsets = list(itertools.accumulate([0] + code_lengths)) | |
offsets = [(offsets[i], offsets[i + 1]) for i in inds] | |
return offsets | |
def verify_label_lengths( | |
audio_sizes, | |
audio_rate, | |
label_path, | |
label_rate, | |
inds, | |
tot, | |
tol=0.1, # tolerance in seconds | |
): | |
if label_rate < 0: | |
logger.info(f"{label_path} is sequence label. skipped") | |
return | |
with open(label_path) as f: | |
lengths = [len(line.rstrip().split()) for line in f] | |
assert len(lengths) == tot | |
lengths = [lengths[i] for i in inds] | |
num_invalid = 0 | |
for i, ind in enumerate(inds): | |
dur_from_audio = audio_sizes[i] / audio_rate | |
dur_from_label = lengths[i] / label_rate | |
if abs(dur_from_audio - dur_from_label) > tol: | |
logger.warning( | |
( | |
f"audio and label duration differ too much " | |
f"(|{dur_from_audio} - {dur_from_label}| > {tol}) " | |
f"in line {ind+1} of {label_path}. Check if `label_rate` " | |
f"is correctly set (currently {label_rate}). " | |
f"num. of samples = {audio_sizes[i]}; " | |
f"label length = {lengths[i]}" | |
) | |
) | |
num_invalid += 1 | |
if num_invalid > 0: | |
logger.warning( | |
f"total {num_invalid} (audio, label) pairs with mismatched lengths" | |
) | |
def logmelfilterbank( | |
audio, | |
sampling_rate, | |
fft_size=1024, | |
hop_size=256, | |
win_length=None, | |
window="hann", | |
num_mels=80, | |
fmin=80, | |
fmax=7600, | |
eps=1e-10, | |
): | |
"""Compute log-Mel filterbank feature. | |
(https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/parallel_wavegan/bin/preprocess.py) | |
Args: | |
audio (ndarray): Audio signal (T,). | |
sampling_rate (int): Sampling rate. | |
fft_size (int): FFT size. | |
hop_size (int): Hop size. | |
win_length (int): Window length. If set to None, it will be the same as fft_size. | |
window (str): Window function type. | |
num_mels (int): Number of mel basis. | |
fmin (int): Minimum frequency in mel basis calculation. | |
fmax (int): Maximum frequency in mel basis calculation. | |
eps (float): Epsilon value to avoid inf in log calculation. | |
Returns: | |
ndarray: Log Mel filterbank feature (#frames, num_mels). | |
""" | |
# get amplitude spectrogram | |
x_stft = librosa.stft(audio, n_fft=fft_size, hop_length=hop_size, | |
win_length=win_length, window=window, pad_mode="reflect") | |
spc = np.abs(x_stft).T # (#frames, #bins) | |
# get mel basis | |
fmin = 0 if fmin is None else fmin | |
fmax = sampling_rate / 2 if fmax is None else fmax | |
mel_basis = librosa.filters.mel(sr=sampling_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax) | |
return np.log10(np.maximum(eps, np.dot(spc, mel_basis.T))) | |
class SpeechPretrainDataset(FairseqDataset): | |
def __init__( | |
self, | |
manifest_path: str, | |
sample_rate: float, | |
label_paths: List[str], | |
label_rates: Union[List[float], float], # -1 for sequence labels | |
pad_list: List[str], | |
eos_list: List[str], | |
label_processors: Optional[List[Any]] = None, | |
max_keep_sample_size: Optional[int] = None, | |
min_keep_sample_size: Optional[int] = None, | |
max_sample_size: Optional[int] = None, | |
shuffle: bool = True, | |
pad_audio: bool = False, | |
normalize: bool = False, | |
store_labels: bool = True, | |
random_crop: bool = False, | |
single_target: bool = False, | |
reduction_factor: int = 1, | |
): | |
self.audio_root, self.audio_names, inds, tot, self.sizes, self.spk_embeds = load_audio( | |
manifest_path, max_keep_sample_size, min_keep_sample_size | |
) | |
self.sample_rate = sample_rate | |
self.shuffle = shuffle | |
self.random_crop = random_crop | |
self.num_labels = len(label_paths) | |
self.pad_list = pad_list | |
self.eos_list = eos_list | |
self.label_processors = label_processors | |
self.single_target = single_target | |
self.label_rates = ( | |
[label_rates for _ in range(len(label_paths))] | |
if isinstance(label_rates, float) | |
else label_rates | |
) | |
self.store_labels = store_labels | |
if store_labels: | |
self.label_list = [load_label(p, inds, tot) for p in label_paths] | |
else: | |
self.label_paths = label_paths | |
self.label_offsets_list = [ | |
load_label_offset(p, inds, tot) for p in label_paths | |
] | |
assert label_processors is None or len(label_processors) == self.num_labels | |
for label_path, label_rate in zip(label_paths, self.label_rates): | |
verify_label_lengths( | |
self.sizes, sample_rate, label_path, label_rate, inds, tot | |
) | |
self.max_sample_size = ( | |
max_sample_size if max_sample_size is not None else sys.maxsize | |
) | |
self.pad_audio = pad_audio | |
self.normalize = normalize | |
self.reduction_factor = reduction_factor | |
logger.info( | |
f"pad_audio={pad_audio}, random_crop={random_crop}, reduction_factor={reduction_factor}, " | |
f"normalize={normalize}, max_sample_size={self.max_sample_size}" | |
) | |
def get_audio(self, index): | |
import soundfile as sf | |
wav_path = os.path.join(self.audio_root, self.audio_names[index]) | |
wav, cur_sample_rate = sf.read(wav_path) | |
wav = torch.from_numpy(wav).float() | |
fbank = logmelfilterbank( | |
wav.view(-1).cpu().numpy(), 16000 | |
) | |
fbank = torch.from_numpy(fbank).float() | |
wav = self.postprocess(wav, cur_sample_rate) | |
return wav, fbank | |
def get_label(self, index, label_idx): | |
if self.store_labels: | |
label = self.label_list[label_idx][index] | |
else: | |
with open(self.label_paths[label_idx]) as f: | |
offset_s, offset_e = self.label_offsets_list[label_idx][index] | |
f.seek(offset_s) | |
label = f.read(offset_e - offset_s) | |
if self.label_processors is not None: | |
label = self.label_processors[label_idx](label) | |
return label | |
def get_labels(self, index): | |
return [self.get_label(index, i) for i in range(self.num_labels)] | |
def __getitem__(self, index): | |
wav, fbank = self.get_audio(index) | |
labels = self.get_labels(index) | |
spkembs = get_features_or_waveform( | |
os.path.join(self.audio_root, self.spk_embeds[index]) | |
) | |
spkembs = torch.from_numpy(spkembs).float() | |
return {"id": index, "source": wav, "target": fbank, "label_list": labels, 'spkembs': spkembs} | |
def __len__(self): | |
return len(self.sizes) | |
def crop_to_max_size(self, wav, target_size): | |
size = len(wav) | |
diff = size - target_size | |
if diff <= 0: | |
return wav, 0 | |
start, end = 0, target_size | |
if self.random_crop: | |
start = np.random.randint(0, diff + 1) | |
end = size - diff + start | |
return wav[start:end], start | |
def collater(self, samples): | |
# target = max(sizes) -> random_crop not used | |
# target = max_sample_size -> random_crop used for long | |
samples = [s for s in samples if s["source"] is not None] | |
if len(samples) == 0: | |
return {} | |
audios = [s["source"] for s in samples] | |
audio_sizes = [len(s) for s in audios] | |
fbanks = [s["target"] for s in samples] | |
fbank_sizes = [len(s) for s in fbanks] | |
if self.pad_audio: | |
audio_size = min(max(audio_sizes), self.max_sample_size) | |
else: | |
audio_size = min(min(audio_sizes), self.max_sample_size) | |
collated_audios, padding_mask, audio_starts = self.collater_audio( | |
audios, audio_size | |
) | |
collated_fbanks = [] | |
collated_audios_size = [] | |
for i in range(len(fbanks)): | |
fbank_start = int(audio_starts[i] / (audio_sizes[i] / fbank_sizes[i])) | |
fbank_size = int(audio_size / (audio_sizes[i] / fbank_sizes[i])) | |
fbank_end = min(fbank_start + fbank_size, fbank_sizes[i]) | |
collated_fbanks.append(fbanks[i][fbank_start : fbank_end]) | |
collated_audios_size.append(audio_size) | |
collated_fbanks_size = [len(s) for s in collated_fbanks] | |
collated_fbanks = _collate_frames(collated_fbanks) | |
collated_fbanks_size = torch.tensor(collated_fbanks_size, dtype=torch.long) | |
# thin out frames for reduction factor (B, Lmax, odim) -> (B, Lmax//r, odim) | |
if self.reduction_factor > 1: | |
collated_fbanks_in = collated_fbanks[:, self.reduction_factor - 1 :: self.reduction_factor] | |
collated_fbanks_size_in = collated_fbanks_size.new([torch.div(olen, self.reduction_factor, rounding_mode='floor') for olen in collated_fbanks_size]) | |
else: | |
collated_fbanks_in, collated_fbanks_size_in = collated_fbanks, collated_fbanks_size | |
prev_output_tokens = torch.cat( | |
[collated_fbanks_in.new_zeros((collated_fbanks_in.shape[0], 1, collated_fbanks_in.shape[2])), collated_fbanks_in[:, :-1]], dim=1 | |
) | |
# make labels for stop prediction | |
labels = collated_fbanks.new_zeros(collated_fbanks.size(0), collated_fbanks.size(1)) | |
for i, l in enumerate(fbank_sizes): | |
labels[i, l - 1 :] = 1.0 | |
spkembs = _collate_frames([s["spkembs"] for s in samples], is_audio_input=True) | |
targets_by_label = [ | |
[s["label_list"][i] for s in samples] for i in range(self.num_labels) | |
] | |
targets_list, lengths_list, ntokens_list = self.collater_label( | |
targets_by_label, audio_size, audio_starts | |
) | |
net_input = { | |
"source": collated_audios, | |
"padding_mask": padding_mask, | |
"prev_output_tokens": prev_output_tokens, | |
"spkembs": spkembs, | |
"tgt_lengths": collated_fbanks_size_in, | |
} | |
batch = { | |
"id": torch.LongTensor([s["id"] for s in samples]), | |
"net_input": net_input, | |
"labels": labels, | |
"dec_target": collated_fbanks, | |
"dec_target_lengths": collated_fbanks_size, | |
"src_lengths": collated_audios_size, | |
"task_name": 'speech_pretrain', | |
} | |
if self.single_target: | |
batch["target_lengths"] = lengths_list[0] | |
batch["ntokens"] = ntokens_list[0] | |
batch["target"] = targets_list[0] | |
else: | |
batch["target_lengths_list"] = lengths_list | |
batch["ntokens_list"] = ntokens_list | |
batch["target_list"] = targets_list | |
return batch | |
def collater_audio(self, audios, audio_size): | |
collated_audios = audios[0].new_zeros(len(audios), audio_size) | |
padding_mask = ( | |
torch.BoolTensor(collated_audios.shape).fill_(False) | |
# if self.pad_audio else None | |
) | |
audio_starts = [0 for _ in audios] | |
for i, audio in enumerate(audios): | |
diff = len(audio) - audio_size | |
if diff == 0: | |
collated_audios[i] = audio | |
elif diff < 0: | |
assert self.pad_audio | |
collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)]) | |
padding_mask[i, diff:] = True | |
else: | |
collated_audios[i], audio_starts[i] = self.crop_to_max_size( | |
audio, audio_size | |
) | |
return collated_audios, padding_mask, audio_starts | |
def collater_frm_label(self, targets, audio_size, audio_starts, label_rate, pad): | |
assert label_rate > 0 | |
s2f = label_rate / self.sample_rate | |
frm_starts = [int(round(s * s2f)) for s in audio_starts] | |
frm_size = int(round(audio_size * s2f)) | |
if not self.pad_audio: | |
rem_size = [len(t) - s for t, s in zip(targets, frm_starts)] | |
frm_size = min(frm_size, *rem_size) | |
targets = [t[s : s + frm_size] for t, s in zip(targets, frm_starts)] | |
logger.debug(f"audio_starts={audio_starts}") | |
logger.debug(f"frame_starts={frm_starts}") | |
logger.debug(f"frame_size={frm_size}") | |
lengths = torch.LongTensor([len(t) for t in targets]) | |
ntokens = lengths.sum().item() | |
targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False) | |
return targets, lengths, ntokens | |
def collater_seq_label(self, targets, pad): | |
lengths = torch.LongTensor([len(t) for t in targets]) | |
ntokens = lengths.sum().item() | |
targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False) | |
return targets, lengths, ntokens | |
def collater_label(self, targets_by_label, audio_size, audio_starts): | |
targets_list, lengths_list, ntokens_list = [], [], [] | |
itr = zip(targets_by_label, self.label_rates, self.pad_list) | |
for targets, label_rate, pad in itr: | |
if label_rate == -1.0: | |
targets, lengths, ntokens = self.collater_seq_label(targets, pad) | |
else: | |
targets, lengths, ntokens = self.collater_frm_label( | |
targets, audio_size, audio_starts, label_rate, pad | |
) | |
targets_list.append(targets) | |
lengths_list.append(lengths) | |
ntokens_list.append(ntokens) | |
return targets_list, lengths_list, ntokens_list | |
def num_tokens(self, index): | |
return self.size(index) | |
def size(self, index): | |
if self.pad_audio: | |
return self.sizes[index] | |
return min(self.sizes[index], self.max_sample_size) | |
def ordered_indices(self): | |
if self.shuffle: | |
order = [np.random.permutation(len(self))] | |
else: | |
order = [np.arange(len(self))] | |
order.append(self.sizes) | |
return np.lexsort(order)[::-1] | |
def postprocess(self, wav, cur_sample_rate): | |
if wav.dim() == 2: | |
wav = wav.mean(-1) | |
assert wav.dim() == 1, wav.dim() | |
if cur_sample_rate != self.sample_rate: | |
raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}") | |
if self.normalize: | |
with torch.no_grad(): | |
wav = F.layer_norm(wav, wav.shape) | |
return wav | |