Spaces:
Running
Running
new lb
Browse files
app.py
CHANGED
@@ -1202,287 +1202,1521 @@ def get_data_zbench(eval_mode='zero_shot', fillna=True, rank=True):
|
|
1202 |
ZBENCH_ZERO_SHOT = get_data_zbench(eval_mode="zero_shot")
|
1203 |
ZBENCH_FIVE_SHOT = get_data_zbench(eval_mode="five_shot")
|
1204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1205 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1206 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1207 |
|
1208 |
-
block = gr.Blocks()
|
1209 |
-
with block:
|
1210 |
-
|
1211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1212 |
|
1213 |
-
|
1214 |
-
|
1215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1216 |
""")
|
|
|
1217 |
with gr.Tabs():
|
1218 |
|
1219 |
|
1220 |
-
|
1221 |
-
|
|
|
|
|
1222 |
with gr.Row():
|
1223 |
gr.Markdown("""
|
1224 |
-
**
|
1225 |
|
1226 |
-
- **Metric:**
|
1227 |
-
- **Languages:** English
|
1228 |
""")
|
1229 |
|
1230 |
with gr.TabItem("zero_shot"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1232 |
|
|
|
1233 |
with gr.TabItem("Overall"):
|
|
|
|
|
|
|
|
|
|
|
|
|
1234 |
|
|
|
|
|
1235 |
with gr.Row():
|
1236 |
-
|
1237 |
-
|
1238 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1239 |
type="pandas",
|
1240 |
)
|
1241 |
|
1242 |
|
1243 |
-
with gr.TabItem("Language Performance"):
|
1244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1245 |
with gr.Row():
|
1246 |
-
|
1247 |
-
|
1248 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1249 |
type="pandas",
|
1250 |
)
|
1251 |
|
1252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1253 |
with gr.TabItem("five_shot"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1254 |
|
1255 |
|
|
|
|
|
1256 |
with gr.TabItem("Overall"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1257 |
|
|
|
|
|
1258 |
with gr.Row():
|
1259 |
-
|
1260 |
-
|
1261 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1262 |
type="pandas",
|
1263 |
)
|
1264 |
|
1265 |
|
1266 |
-
with gr.TabItem("Language Performance"):
|
1267 |
|
|
|
|
|
1268 |
with gr.Row():
|
1269 |
gr.components.Dataframe(
|
1270 |
-
|
1271 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1272 |
type="pandas",
|
1273 |
)
|
1274 |
|
1275 |
|
1276 |
-
|
1277 |
-
|
1278 |
-
with gr.TabItem("Cross-LogiQA"):
|
1279 |
with gr.Row():
|
1280 |
gr.Markdown("""
|
1281 |
-
**
|
1282 |
|
1283 |
-
- **Metric:**
|
1284 |
-
- **Languages:**
|
1285 |
""")
|
1286 |
|
1287 |
with gr.TabItem("zero_shot"):
|
1288 |
-
|
1289 |
-
|
1290 |
with gr.TabItem("Overall"):
|
1291 |
-
|
1292 |
with gr.Row():
|
1293 |
gr.components.Dataframe(
|
1294 |
-
|
1295 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1296 |
type="pandas",
|
1297 |
)
|
1298 |
|
1299 |
|
1300 |
-
with gr.TabItem("Language Performance"):
|
1301 |
|
|
|
|
|
1302 |
with gr.Row():
|
1303 |
gr.components.Dataframe(
|
1304 |
-
|
1305 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1306 |
type="pandas",
|
1307 |
)
|
1308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1309 |
|
1310 |
-
with gr.TabItem("
|
1311 |
-
|
1312 |
-
|
1313 |
with gr.TabItem("Overall"):
|
1314 |
-
|
1315 |
with gr.Row():
|
1316 |
gr.components.Dataframe(
|
1317 |
-
|
1318 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1319 |
type="pandas",
|
1320 |
)
|
1321 |
|
1322 |
|
1323 |
-
with gr.TabItem("Language Performance"):
|
1324 |
|
|
|
|
|
1325 |
with gr.Row():
|
1326 |
gr.components.Dataframe(
|
1327 |
-
|
1328 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1329 |
type="pandas",
|
1330 |
)
|
1331 |
|
1332 |
-
|
1333 |
-
|
1334 |
-
with gr.TabItem("SG_EVAL"):
|
1335 |
with gr.Row():
|
1336 |
gr.Markdown("""
|
1337 |
-
**
|
1338 |
|
1339 |
-
- **Metric:** Accuracy
|
1340 |
-
- **Languages:**
|
1341 |
""")
|
1342 |
|
1343 |
with gr.TabItem("zero_shot"):
|
1344 |
with gr.TabItem("Overall"):
|
1345 |
with gr.Row():
|
1346 |
gr.components.Dataframe(
|
1347 |
-
|
1348 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1349 |
type="pandas",
|
1350 |
)
|
1351 |
|
|
|
|
|
1352 |
with gr.TabItem("five_shot"):
|
1353 |
with gr.TabItem("Overall"):
|
1354 |
with gr.Row():
|
1355 |
gr.components.Dataframe(
|
1356 |
-
|
1357 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1358 |
type="pandas",
|
1359 |
)
|
1360 |
|
1361 |
-
|
1362 |
-
|
1363 |
-
with gr.TabItem("US_EVAL"):
|
1364 |
with gr.Row():
|
1365 |
gr.Markdown("""
|
1366 |
-
**
|
1367 |
|
1368 |
-
- **Metric:** Accuracy
|
1369 |
-
- **Languages:**
|
1370 |
""")
|
1371 |
|
1372 |
with gr.TabItem("zero_shot"):
|
1373 |
with gr.TabItem("Overall"):
|
1374 |
with gr.Row():
|
1375 |
gr.components.Dataframe(
|
1376 |
-
|
1377 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1378 |
type="pandas",
|
1379 |
)
|
1380 |
|
|
|
|
|
1381 |
with gr.TabItem("five_shot"):
|
1382 |
with gr.TabItem("Overall"):
|
1383 |
with gr.Row():
|
1384 |
gr.components.Dataframe(
|
1385 |
-
|
1386 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1387 |
type="pandas",
|
1388 |
)
|
1389 |
|
1390 |
|
1391 |
-
# dataset
|
1392 |
-
with gr.TabItem("
|
1393 |
with gr.Row():
|
1394 |
gr.Markdown("""
|
1395 |
-
**
|
1396 |
|
1397 |
-
- **Metric:** Accuracy
|
1398 |
-
- **Languages:**
|
1399 |
""")
|
1400 |
|
1401 |
with gr.TabItem("zero_shot"):
|
1402 |
with gr.TabItem("Overall"):
|
1403 |
with gr.Row():
|
1404 |
gr.components.Dataframe(
|
1405 |
-
|
1406 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1407 |
type="pandas",
|
1408 |
)
|
1409 |
|
|
|
|
|
1410 |
with gr.TabItem("five_shot"):
|
1411 |
with gr.TabItem("Overall"):
|
1412 |
with gr.Row():
|
1413 |
gr.components.Dataframe(
|
1414 |
-
|
1415 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1416 |
type="pandas",
|
1417 |
)
|
1418 |
|
1419 |
|
1420 |
-
|
1421 |
-
|
1422 |
-
with gr.TabItem("PH_EVAL"):
|
1423 |
with gr.Row():
|
1424 |
gr.Markdown("""
|
1425 |
-
**
|
1426 |
|
1427 |
-
- **Metric:** Accuracy
|
1428 |
-
- **Languages:**
|
1429 |
""")
|
1430 |
|
1431 |
with gr.TabItem("zero_shot"):
|
1432 |
with gr.TabItem("Overall"):
|
1433 |
with gr.Row():
|
1434 |
gr.components.Dataframe(
|
1435 |
-
|
1436 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1437 |
type="pandas",
|
1438 |
)
|
1439 |
|
|
|
|
|
1440 |
with gr.TabItem("five_shot"):
|
1441 |
with gr.TabItem("Overall"):
|
1442 |
with gr.Row():
|
1443 |
gr.components.Dataframe(
|
1444 |
-
|
1445 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1446 |
type="pandas",
|
1447 |
)
|
1448 |
|
1449 |
-
|
1450 |
-
|
1451 |
-
with gr.TabItem("Singlish to English Translation"):
|
1452 |
with gr.Row():
|
1453 |
gr.Markdown("""
|
1454 |
-
**
|
1455 |
|
1456 |
-
- **Metric:**
|
1457 |
-
- **Languages:**
|
1458 |
""")
|
1459 |
|
1460 |
with gr.TabItem("zero_shot"):
|
1461 |
with gr.TabItem("Overall"):
|
1462 |
with gr.Row():
|
1463 |
gr.components.Dataframe(
|
1464 |
-
|
1465 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1466 |
type="pandas",
|
1467 |
)
|
1468 |
|
|
|
|
|
1469 |
with gr.TabItem("five_shot"):
|
1470 |
with gr.TabItem("Overall"):
|
1471 |
with gr.Row():
|
1472 |
gr.components.Dataframe(
|
1473 |
-
|
1474 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1475 |
type="pandas",
|
1476 |
)
|
1477 |
|
1478 |
|
1479 |
-
# dataset
|
1480 |
-
with gr.TabItem("
|
1481 |
with gr.Row():
|
1482 |
gr.Markdown("""
|
1483 |
-
**
|
1484 |
|
1485 |
-
- **Metric:**
|
1486 |
- **Languages:** English
|
1487 |
""")
|
1488 |
|
@@ -1490,28 +2724,29 @@ with block:
|
|
1490 |
with gr.TabItem("Overall"):
|
1491 |
with gr.Row():
|
1492 |
gr.components.Dataframe(
|
1493 |
-
|
1494 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1495 |
type="pandas",
|
1496 |
)
|
1497 |
|
|
|
|
|
1498 |
with gr.TabItem("five_shot"):
|
1499 |
with gr.TabItem("Overall"):
|
1500 |
with gr.Row():
|
1501 |
gr.components.Dataframe(
|
1502 |
-
|
1503 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1504 |
type="pandas",
|
1505 |
)
|
1506 |
|
1507 |
-
|
1508 |
-
|
1509 |
-
with gr.TabItem("FLORES Vitenamese to English Translation"):
|
1510 |
with gr.Row():
|
1511 |
gr.Markdown("""
|
1512 |
-
**
|
1513 |
|
1514 |
-
- **Metric:**
|
1515 |
- **Languages:** English
|
1516 |
""")
|
1517 |
|
@@ -1519,29 +2754,31 @@ with block:
|
|
1519 |
with gr.TabItem("Overall"):
|
1520 |
with gr.Row():
|
1521 |
gr.components.Dataframe(
|
1522 |
-
|
1523 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1524 |
type="pandas",
|
1525 |
)
|
1526 |
|
|
|
|
|
1527 |
with gr.TabItem("five_shot"):
|
1528 |
with gr.TabItem("Overall"):
|
1529 |
with gr.Row():
|
1530 |
gr.components.Dataframe(
|
1531 |
-
|
1532 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1533 |
type="pandas",
|
1534 |
)
|
1535 |
|
1536 |
|
1537 |
|
1538 |
-
# dataset
|
1539 |
-
with gr.TabItem("
|
1540 |
with gr.Row():
|
1541 |
gr.Markdown("""
|
1542 |
-
**
|
1543 |
|
1544 |
-
- **Metric:**
|
1545 |
- **Languages:** English
|
1546 |
""")
|
1547 |
|
@@ -1549,29 +2786,30 @@ with block:
|
|
1549 |
with gr.TabItem("Overall"):
|
1550 |
with gr.Row():
|
1551 |
gr.components.Dataframe(
|
1552 |
-
|
1553 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1554 |
type="pandas",
|
1555 |
)
|
1556 |
|
|
|
|
|
1557 |
with gr.TabItem("five_shot"):
|
1558 |
with gr.TabItem("Overall"):
|
1559 |
with gr.Row():
|
1560 |
gr.components.Dataframe(
|
1561 |
-
|
1562 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1563 |
type="pandas",
|
1564 |
)
|
1565 |
|
1566 |
|
1567 |
-
|
1568 |
-
|
1569 |
-
with gr.TabItem("FLORES Malay to English Translation"):
|
1570 |
with gr.Row():
|
1571 |
gr.Markdown("""
|
1572 |
-
**
|
1573 |
|
1574 |
-
- **Metric:**
|
1575 |
- **Languages:** English
|
1576 |
""")
|
1577 |
|
@@ -1579,26 +2817,28 @@ with block:
|
|
1579 |
with gr.TabItem("Overall"):
|
1580 |
with gr.Row():
|
1581 |
gr.components.Dataframe(
|
1582 |
-
|
1583 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1584 |
type="pandas",
|
1585 |
)
|
1586 |
|
|
|
|
|
1587 |
with gr.TabItem("five_shot"):
|
1588 |
with gr.TabItem("Overall"):
|
1589 |
with gr.Row():
|
1590 |
gr.components.Dataframe(
|
1591 |
-
|
1592 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1593 |
type="pandas",
|
1594 |
)
|
1595 |
|
1596 |
|
1597 |
-
# dataset
|
1598 |
-
with gr.TabItem("
|
1599 |
with gr.Row():
|
1600 |
gr.Markdown("""
|
1601 |
-
**
|
1602 |
|
1603 |
- **Metric:** Accuracy.
|
1604 |
- **Languages:** English
|
@@ -1608,26 +2848,28 @@ with block:
|
|
1608 |
with gr.TabItem("Overall"):
|
1609 |
with gr.Row():
|
1610 |
gr.components.Dataframe(
|
1611 |
-
|
1612 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1613 |
type="pandas",
|
1614 |
)
|
1615 |
|
|
|
|
|
1616 |
with gr.TabItem("five_shot"):
|
1617 |
with gr.TabItem("Overall"):
|
1618 |
with gr.Row():
|
1619 |
gr.components.Dataframe(
|
1620 |
-
|
1621 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1622 |
type="pandas",
|
1623 |
)
|
1624 |
|
1625 |
|
1626 |
-
# dataset
|
1627 |
-
with gr.TabItem("
|
1628 |
with gr.Row():
|
1629 |
gr.Markdown("""
|
1630 |
-
**
|
1631 |
|
1632 |
- **Metric:** Accuracy.
|
1633 |
- **Languages:** English
|
@@ -1637,8 +2879,8 @@ with block:
|
|
1637 |
with gr.TabItem("Overall"):
|
1638 |
with gr.Row():
|
1639 |
gr.components.Dataframe(
|
1640 |
-
|
1641 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1642 |
type="pandas",
|
1643 |
)
|
1644 |
|
@@ -1648,27 +2890,28 @@ with block:
|
|
1648 |
with gr.TabItem("Overall"):
|
1649 |
with gr.Row():
|
1650 |
gr.components.Dataframe(
|
1651 |
-
|
1652 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1653 |
type="pandas",
|
1654 |
)
|
1655 |
|
1656 |
-
|
1657 |
-
|
|
|
1658 |
with gr.Row():
|
1659 |
gr.Markdown("""
|
1660 |
-
**
|
1661 |
|
1662 |
- **Metric:** Accuracy.
|
1663 |
-
- **Languages:**
|
1664 |
""")
|
1665 |
|
1666 |
with gr.TabItem("zero_shot"):
|
1667 |
with gr.TabItem("Overall"):
|
1668 |
with gr.Row():
|
1669 |
gr.components.Dataframe(
|
1670 |
-
|
1671 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1672 |
type="pandas",
|
1673 |
)
|
1674 |
|
@@ -1678,28 +2921,28 @@ with block:
|
|
1678 |
with gr.TabItem("Overall"):
|
1679 |
with gr.Row():
|
1680 |
gr.components.Dataframe(
|
1681 |
-
|
1682 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1683 |
type="pandas",
|
1684 |
)
|
1685 |
|
1686 |
|
1687 |
-
# dataset
|
1688 |
-
with gr.TabItem("
|
1689 |
with gr.Row():
|
1690 |
gr.Markdown("""
|
1691 |
-
**
|
1692 |
|
1693 |
- **Metric:** Accuracy.
|
1694 |
-
- **Languages:**
|
1695 |
""")
|
1696 |
|
1697 |
with gr.TabItem("zero_shot"):
|
1698 |
with gr.TabItem("Overall"):
|
1699 |
with gr.Row():
|
1700 |
gr.components.Dataframe(
|
1701 |
-
|
1702 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1703 |
type="pandas",
|
1704 |
)
|
1705 |
|
@@ -1709,27 +2952,28 @@ with block:
|
|
1709 |
with gr.TabItem("Overall"):
|
1710 |
with gr.Row():
|
1711 |
gr.components.Dataframe(
|
1712 |
-
|
1713 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1714 |
type="pandas",
|
1715 |
)
|
1716 |
|
1717 |
-
|
1718 |
-
|
|
|
1719 |
with gr.Row():
|
1720 |
gr.Markdown("""
|
1721 |
-
**
|
1722 |
|
1723 |
- **Metric:** Accuracy.
|
1724 |
-
- **Languages:**
|
1725 |
""")
|
1726 |
|
1727 |
with gr.TabItem("zero_shot"):
|
1728 |
with gr.TabItem("Overall"):
|
1729 |
with gr.Row():
|
1730 |
gr.components.Dataframe(
|
1731 |
-
|
1732 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1733 |
type="pandas",
|
1734 |
)
|
1735 |
|
@@ -1739,27 +2983,28 @@ with block:
|
|
1739 |
with gr.TabItem("Overall"):
|
1740 |
with gr.Row():
|
1741 |
gr.components.Dataframe(
|
1742 |
-
|
1743 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1744 |
type="pandas",
|
1745 |
)
|
1746 |
|
1747 |
-
|
1748 |
-
|
|
|
1749 |
with gr.Row():
|
1750 |
gr.Markdown("""
|
1751 |
-
**
|
1752 |
|
1753 |
- **Metric:** Accuracy.
|
1754 |
-
- **Languages:**
|
1755 |
""")
|
1756 |
|
1757 |
with gr.TabItem("zero_shot"):
|
1758 |
with gr.TabItem("Overall"):
|
1759 |
with gr.Row():
|
1760 |
gr.components.Dataframe(
|
1761 |
-
|
1762 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1763 |
type="pandas",
|
1764 |
)
|
1765 |
|
@@ -1769,27 +3014,28 @@ with block:
|
|
1769 |
with gr.TabItem("Overall"):
|
1770 |
with gr.Row():
|
1771 |
gr.components.Dataframe(
|
1772 |
-
|
1773 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1774 |
type="pandas",
|
1775 |
)
|
1776 |
|
1777 |
-
|
1778 |
-
|
|
|
1779 |
with gr.Row():
|
1780 |
gr.Markdown("""
|
1781 |
-
**
|
1782 |
|
1783 |
- **Metric:** Accuracy.
|
1784 |
-
- **Languages:**
|
1785 |
""")
|
1786 |
|
1787 |
with gr.TabItem("zero_shot"):
|
1788 |
with gr.TabItem("Overall"):
|
1789 |
with gr.Row():
|
1790 |
gr.components.Dataframe(
|
1791 |
-
|
1792 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1793 |
type="pandas",
|
1794 |
)
|
1795 |
|
@@ -1799,8 +3045,8 @@ with block:
|
|
1799 |
with gr.TabItem("Overall"):
|
1800 |
with gr.Row():
|
1801 |
gr.components.Dataframe(
|
1802 |
-
|
1803 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1804 |
type="pandas",
|
1805 |
)
|
1806 |
|
@@ -1814,15 +3060,6 @@ with block:
|
|
1814 |
|
1815 |
|
1816 |
|
1817 |
-
|
1818 |
-
|
1819 |
-
|
1820 |
-
|
1821 |
-
|
1822 |
-
|
1823 |
-
|
1824 |
-
|
1825 |
-
|
1826 |
|
1827 |
gr.Markdown(r"""
|
1828 |
|
|
|
1202 |
ZBENCH_ZERO_SHOT = get_data_zbench(eval_mode="zero_shot")
|
1203 |
ZBENCH_FIVE_SHOT = get_data_zbench(eval_mode="five_shot")
|
1204 |
|
1205 |
+
|
1206 |
+
|
1207 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1208 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1209 |
+
|
1210 |
+
|
1211 |
+
def get_data_ind_emotion(eval_mode='zero_shot', fillna=True, rank=True):
|
1212 |
+
|
1213 |
+
df_list = []
|
1214 |
+
|
1215 |
+
for model in MODEL_LIST:
|
1216 |
+
|
1217 |
+
|
1218 |
+
results_list = [ALL_RESULTS[model][eval_mode]['ind_emotion'][res] for res in ALL_RESULTS[model][eval_mode]['ind_emotion']]
|
1219 |
+
|
1220 |
+
|
1221 |
+
try:
|
1222 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1223 |
+
|
1224 |
+
except:
|
1225 |
+
print(results_list)
|
1226 |
+
accuracy = -1
|
1227 |
+
|
1228 |
+
|
1229 |
+
res = {
|
1230 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1231 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1232 |
+
"Accuracy": accuracy,
|
1233 |
+
}
|
1234 |
+
|
1235 |
+
df_list.append(res)
|
1236 |
+
|
1237 |
+
|
1238 |
+
df = pd.DataFrame(df_list)
|
1239 |
+
# If there are any models that are the same, merge them
|
1240 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1241 |
+
df = df.groupby("Model", as_index=False).first()
|
1242 |
+
# Put 'Model' column first
|
1243 |
+
#cols = sorted(list(df.columns))
|
1244 |
+
cols = list(df.columns)
|
1245 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1246 |
+
df = df[cols]
|
1247 |
+
|
1248 |
+
if rank:
|
1249 |
+
df = add_rank(df, compute_average=True)
|
1250 |
+
|
1251 |
+
if fillna:
|
1252 |
+
df.fillna("", inplace=True)
|
1253 |
+
|
1254 |
+
return df
|
1255 |
+
|
1256 |
+
|
1257 |
+
IND_EMOTION_ZERO_SHOT = get_data_ind_emotion(eval_mode="zero_shot")
|
1258 |
+
IND_EMOTION_FIVE_SHOT = get_data_ind_emotion(eval_mode="five_shot")
|
1259 |
+
|
1260 |
+
|
1261 |
+
|
1262 |
+
|
1263 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1264 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1265 |
+
|
1266 |
+
|
1267 |
+
def get_data_ocnli(eval_mode='zero_shot', fillna=True, rank=True):
|
1268 |
+
|
1269 |
+
df_list = []
|
1270 |
+
|
1271 |
+
for model in MODEL_LIST:
|
1272 |
+
|
1273 |
+
|
1274 |
+
results_list = [ALL_RESULTS[model][eval_mode]['ocnli'][res] for res in ALL_RESULTS[model][eval_mode]['ocnli']]
|
1275 |
+
|
1276 |
+
|
1277 |
+
try:
|
1278 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1279 |
+
|
1280 |
+
except:
|
1281 |
+
print(results_list)
|
1282 |
+
accuracy = -1
|
1283 |
+
|
1284 |
+
|
1285 |
+
res = {
|
1286 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1287 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1288 |
+
"Accuracy": accuracy,
|
1289 |
+
}
|
1290 |
+
|
1291 |
+
df_list.append(res)
|
1292 |
+
|
1293 |
+
|
1294 |
+
df = pd.DataFrame(df_list)
|
1295 |
+
# If there are any models that are the same, merge them
|
1296 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1297 |
+
df = df.groupby("Model", as_index=False).first()
|
1298 |
+
# Put 'Model' column first
|
1299 |
+
#cols = sorted(list(df.columns))
|
1300 |
+
cols = list(df.columns)
|
1301 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1302 |
+
df = df[cols]
|
1303 |
+
|
1304 |
+
if rank:
|
1305 |
+
df = add_rank(df, compute_average=True)
|
1306 |
+
|
1307 |
+
if fillna:
|
1308 |
+
df.fillna("", inplace=True)
|
1309 |
+
|
1310 |
+
return df
|
1311 |
+
|
1312 |
+
|
1313 |
+
OCNLI_ZERO_SHOT = get_data_ocnli(eval_mode="zero_shot")
|
1314 |
+
OCNLI_FIVE_SHOT = get_data_ocnli(eval_mode="five_shot")
|
1315 |
+
|
1316 |
+
|
1317 |
+
|
1318 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1319 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1320 |
+
|
1321 |
+
|
1322 |
+
def get_data_c3(eval_mode='zero_shot', fillna=True, rank=True):
|
1323 |
+
|
1324 |
+
df_list = []
|
1325 |
+
|
1326 |
+
for model in MODEL_LIST:
|
1327 |
+
|
1328 |
+
|
1329 |
+
results_list = [ALL_RESULTS[model][eval_mode]['c3'][res] for res in ALL_RESULTS[model][eval_mode]['c3']]
|
1330 |
+
|
1331 |
+
|
1332 |
+
try:
|
1333 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1334 |
+
|
1335 |
+
except:
|
1336 |
+
print(results_list)
|
1337 |
+
accuracy = -1
|
1338 |
+
|
1339 |
+
|
1340 |
+
res = {
|
1341 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1342 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1343 |
+
"Accuracy": accuracy,
|
1344 |
+
}
|
1345 |
+
|
1346 |
+
df_list.append(res)
|
1347 |
+
|
1348 |
+
|
1349 |
+
df = pd.DataFrame(df_list)
|
1350 |
+
# If there are any models that are the same, merge them
|
1351 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1352 |
+
df = df.groupby("Model", as_index=False).first()
|
1353 |
+
# Put 'Model' column first
|
1354 |
+
#cols = sorted(list(df.columns))
|
1355 |
+
cols = list(df.columns)
|
1356 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1357 |
+
df = df[cols]
|
1358 |
+
|
1359 |
+
if rank:
|
1360 |
+
df = add_rank(df, compute_average=True)
|
1361 |
+
|
1362 |
+
if fillna:
|
1363 |
+
df.fillna("", inplace=True)
|
1364 |
+
|
1365 |
+
return df
|
1366 |
+
|
1367 |
+
|
1368 |
+
C3_ZERO_SHOT = get_data_c3(eval_mode="zero_shot")
|
1369 |
+
C3_FIVE_SHOT = get_data_c3(eval_mode="five_shot")
|
1370 |
+
|
1371 |
+
|
1372 |
+
|
1373 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1374 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1375 |
+
|
1376 |
+
|
1377 |
+
def get_data_dream(eval_mode='zero_shot', fillna=True, rank=True):
|
1378 |
+
|
1379 |
+
df_list = []
|
1380 |
+
|
1381 |
+
for model in MODEL_LIST:
|
1382 |
+
|
1383 |
+
|
1384 |
+
results_list = [ALL_RESULTS[model][eval_mode]['dream'][res] for res in ALL_RESULTS[model][eval_mode]['dream']]
|
1385 |
+
|
1386 |
+
|
1387 |
+
try:
|
1388 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1389 |
+
|
1390 |
+
except:
|
1391 |
+
print(results_list)
|
1392 |
+
accuracy = -1
|
1393 |
+
|
1394 |
+
|
1395 |
+
res = {
|
1396 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1397 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1398 |
+
"Accuracy": accuracy,
|
1399 |
+
}
|
1400 |
+
|
1401 |
+
df_list.append(res)
|
1402 |
+
|
1403 |
+
|
1404 |
+
df = pd.DataFrame(df_list)
|
1405 |
+
# If there are any models that are the same, merge them
|
1406 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1407 |
+
df = df.groupby("Model", as_index=False).first()
|
1408 |
+
# Put 'Model' column first
|
1409 |
+
#cols = sorted(list(df.columns))
|
1410 |
+
cols = list(df.columns)
|
1411 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1412 |
+
df = df[cols]
|
1413 |
+
|
1414 |
+
if rank:
|
1415 |
+
df = add_rank(df, compute_average=True)
|
1416 |
+
|
1417 |
+
if fillna:
|
1418 |
+
df.fillna("", inplace=True)
|
1419 |
+
|
1420 |
+
return df
|
1421 |
+
|
1422 |
+
|
1423 |
+
DREAM_ZERO_SHOT = get_data_dream(eval_mode="zero_shot")
|
1424 |
+
DREAM_FIVE_SHOT = get_data_dream(eval_mode="five_shot")
|
1425 |
+
|
1426 |
+
|
1427 |
+
|
1428 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1429 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1430 |
+
|
1431 |
+
|
1432 |
+
def get_data_samsum(eval_mode='zero_shot', fillna=True, rank=True):
|
1433 |
+
|
1434 |
+
df_list = []
|
1435 |
+
|
1436 |
+
for model in MODEL_LIST:
|
1437 |
+
|
1438 |
+
|
1439 |
+
results_list = [ALL_RESULTS[model][eval_mode]['samsum'][res] for res in ALL_RESULTS[model][eval_mode]['samsum']]
|
1440 |
+
|
1441 |
+
|
1442 |
+
try:
|
1443 |
+
rouge1 = median([results['rouge1'] for results in results_list])
|
1444 |
+
rouge2 = median([results['rouge2'] for results in results_list])
|
1445 |
+
rougeL = median([results['rougeL'] for results in results_list])
|
1446 |
+
|
1447 |
+
except:
|
1448 |
+
print(results_list)
|
1449 |
+
rouge1 = -1
|
1450 |
+
rouge2 = -1
|
1451 |
+
rougeL = -1
|
1452 |
+
|
1453 |
+
|
1454 |
+
res = {
|
1455 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1456 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1457 |
+
"ROUGE-1": rouge1,
|
1458 |
+
"ROUGE-2": rouge2,
|
1459 |
+
"ROUGE-L": rougeL,
|
1460 |
+
}
|
1461 |
+
|
1462 |
+
df_list.append(res)
|
1463 |
+
|
1464 |
+
|
1465 |
+
df = pd.DataFrame(df_list)
|
1466 |
+
# If there are any models that are the same, merge them
|
1467 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1468 |
+
df = df.groupby("Model", as_index=False).first()
|
1469 |
+
# Put 'Model' column first
|
1470 |
+
#cols = sorted(list(df.columns))
|
1471 |
+
cols = list(df.columns)
|
1472 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1473 |
+
df = df[cols]
|
1474 |
+
|
1475 |
+
if rank:
|
1476 |
+
df = add_rank(df, compute_average=True)
|
1477 |
+
|
1478 |
+
if fillna:
|
1479 |
+
df.fillna("", inplace=True)
|
1480 |
+
|
1481 |
+
return df
|
1482 |
+
|
1483 |
+
|
1484 |
+
SAMSUM_ZERO_SHOT = get_data_samsum(eval_mode="zero_shot")
|
1485 |
+
SAMSUM_FIVE_SHOT = get_data_samsum(eval_mode="five_shot")
|
1486 |
+
|
1487 |
+
|
1488 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1489 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1490 |
+
|
1491 |
+
|
1492 |
+
def get_data_dialogsum(eval_mode='zero_shot', fillna=True, rank=True):
|
1493 |
+
|
1494 |
+
df_list = []
|
1495 |
+
|
1496 |
+
for model in MODEL_LIST:
|
1497 |
+
|
1498 |
+
|
1499 |
+
results_list = [ALL_RESULTS[model][eval_mode]['dialogsum'][res] for res in ALL_RESULTS[model][eval_mode]['dialogsum']]
|
1500 |
+
|
1501 |
+
|
1502 |
+
try:
|
1503 |
+
rouge1 = median([results['rouge1'] for results in results_list])
|
1504 |
+
rouge2 = median([results['rouge2'] for results in results_list])
|
1505 |
+
rougeL = median([results['rougeL'] for results in results_list])
|
1506 |
+
|
1507 |
+
except:
|
1508 |
+
print(results_list)
|
1509 |
+
rouge1 = -1
|
1510 |
+
rouge2 = -1
|
1511 |
+
rougeL = -1
|
1512 |
+
|
1513 |
+
|
1514 |
+
res = {
|
1515 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1516 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1517 |
+
"ROUGE-1": rouge1,
|
1518 |
+
"ROUGE-2": rouge2,
|
1519 |
+
"ROUGE-L": rougeL,
|
1520 |
+
}
|
1521 |
+
|
1522 |
+
df_list.append(res)
|
1523 |
+
|
1524 |
+
|
1525 |
+
df = pd.DataFrame(df_list)
|
1526 |
+
# If there are any models that are the same, merge them
|
1527 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1528 |
+
df = df.groupby("Model", as_index=False).first()
|
1529 |
+
# Put 'Model' column first
|
1530 |
+
#cols = sorted(list(df.columns))
|
1531 |
+
cols = list(df.columns)
|
1532 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1533 |
+
df = df[cols]
|
1534 |
+
|
1535 |
+
if rank:
|
1536 |
+
df = add_rank(df, compute_average=True)
|
1537 |
+
|
1538 |
+
if fillna:
|
1539 |
+
df.fillna("", inplace=True)
|
1540 |
+
|
1541 |
+
return df
|
1542 |
+
|
1543 |
+
|
1544 |
+
DIALOGSUM_ZERO_SHOT = get_data_dialogsum(eval_mode="zero_shot")
|
1545 |
+
DIALOGSUM_FIVE_SHOT = get_data_dialogsum(eval_mode="five_shot")
|
1546 |
+
|
1547 |
+
|
1548 |
+
|
1549 |
+
|
1550 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1551 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1552 |
+
|
1553 |
+
|
1554 |
+
def get_data_sst2(eval_mode='zero_shot', fillna=True, rank=True):
|
1555 |
+
|
1556 |
+
df_list = []
|
1557 |
+
|
1558 |
+
for model in MODEL_LIST:
|
1559 |
+
|
1560 |
+
|
1561 |
+
results_list = [ALL_RESULTS[model][eval_mode]['sst2'][res] for res in ALL_RESULTS[model][eval_mode]['sst2']]
|
1562 |
+
|
1563 |
+
|
1564 |
+
try:
|
1565 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1566 |
+
|
1567 |
+
except:
|
1568 |
+
print(results_list)
|
1569 |
+
accuracy = -1
|
1570 |
+
|
1571 |
+
|
1572 |
+
res = {
|
1573 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1574 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1575 |
+
"Accuracy": accuracy,
|
1576 |
+
}
|
1577 |
+
|
1578 |
+
df_list.append(res)
|
1579 |
+
|
1580 |
+
|
1581 |
+
df = pd.DataFrame(df_list)
|
1582 |
+
# If there are any models that are the same, merge them
|
1583 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1584 |
+
df = df.groupby("Model", as_index=False).first()
|
1585 |
+
# Put 'Model' column first
|
1586 |
+
#cols = sorted(list(df.columns))
|
1587 |
+
cols = list(df.columns)
|
1588 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1589 |
+
df = df[cols]
|
1590 |
+
|
1591 |
+
if rank:
|
1592 |
+
df = add_rank(df, compute_average=True)
|
1593 |
+
|
1594 |
+
if fillna:
|
1595 |
+
df.fillna("", inplace=True)
|
1596 |
+
|
1597 |
+
return df
|
1598 |
+
|
1599 |
+
|
1600 |
+
SST2_ZERO_SHOT = get_data_sst2(eval_mode="zero_shot")
|
1601 |
+
SST2_FIVE_SHOT = get_data_sst2(eval_mode="five_shot")
|
1602 |
+
|
1603 |
+
|
1604 |
+
|
1605 |
+
|
1606 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1607 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1608 |
+
|
1609 |
+
|
1610 |
+
def get_data_cola(eval_mode='zero_shot', fillna=True, rank=True):
|
1611 |
+
|
1612 |
+
df_list = []
|
1613 |
+
|
1614 |
+
for model in MODEL_LIST:
|
1615 |
+
|
1616 |
+
|
1617 |
+
results_list = [ALL_RESULTS[model][eval_mode]['cola'][res] for res in ALL_RESULTS[model][eval_mode]['cola']]
|
1618 |
+
|
1619 |
+
|
1620 |
+
try:
|
1621 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1622 |
+
|
1623 |
+
except:
|
1624 |
+
print(results_list)
|
1625 |
+
accuracy = -1
|
1626 |
+
|
1627 |
+
|
1628 |
+
res = {
|
1629 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1630 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1631 |
+
"Accuracy": accuracy,
|
1632 |
+
}
|
1633 |
+
|
1634 |
+
df_list.append(res)
|
1635 |
+
|
1636 |
+
|
1637 |
+
df = pd.DataFrame(df_list)
|
1638 |
+
# If there are any models that are the same, merge them
|
1639 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1640 |
+
df = df.groupby("Model", as_index=False).first()
|
1641 |
+
# Put 'Model' column first
|
1642 |
+
#cols = sorted(list(df.columns))
|
1643 |
+
cols = list(df.columns)
|
1644 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1645 |
+
df = df[cols]
|
1646 |
+
|
1647 |
+
if rank:
|
1648 |
+
df = add_rank(df, compute_average=True)
|
1649 |
+
|
1650 |
+
if fillna:
|
1651 |
+
df.fillna("", inplace=True)
|
1652 |
+
|
1653 |
+
return df
|
1654 |
+
|
1655 |
+
|
1656 |
+
COLA_ZERO_SHOT = get_data_cola(eval_mode="zero_shot")
|
1657 |
+
COLA_FIVE_SHOT = get_data_cola(eval_mode="five_shot")
|
1658 |
+
|
1659 |
+
|
1660 |
+
|
1661 |
+
|
1662 |
+
|
1663 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1664 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1665 |
+
|
1666 |
+
|
1667 |
+
def get_data_qqp(eval_mode='zero_shot', fillna=True, rank=True):
|
1668 |
+
|
1669 |
+
df_list = []
|
1670 |
+
|
1671 |
+
for model in MODEL_LIST:
|
1672 |
+
|
1673 |
+
|
1674 |
+
results_list = [ALL_RESULTS[model][eval_mode]['qqp'][res] for res in ALL_RESULTS[model][eval_mode]['qqp']]
|
1675 |
+
|
1676 |
+
|
1677 |
+
try:
|
1678 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1679 |
+
|
1680 |
+
except:
|
1681 |
+
print(results_list)
|
1682 |
+
accuracy = -1
|
1683 |
+
|
1684 |
+
|
1685 |
+
res = {
|
1686 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1687 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1688 |
+
"Accuracy": accuracy,
|
1689 |
+
}
|
1690 |
+
|
1691 |
+
df_list.append(res)
|
1692 |
+
|
1693 |
+
|
1694 |
+
df = pd.DataFrame(df_list)
|
1695 |
+
# If there are any models that are the same, merge them
|
1696 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1697 |
+
df = df.groupby("Model", as_index=False).first()
|
1698 |
+
# Put 'Model' column first
|
1699 |
+
#cols = sorted(list(df.columns))
|
1700 |
+
cols = list(df.columns)
|
1701 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1702 |
+
df = df[cols]
|
1703 |
+
|
1704 |
+
if rank:
|
1705 |
+
df = add_rank(df, compute_average=True)
|
1706 |
+
|
1707 |
+
if fillna:
|
1708 |
+
df.fillna("", inplace=True)
|
1709 |
+
|
1710 |
+
return df
|
1711 |
+
|
1712 |
+
|
1713 |
+
QQP_ZERO_SHOT = get_data_qqp(eval_mode="zero_shot")
|
1714 |
+
QQP_FIVE_SHOT = get_data_qqp(eval_mode="five_shot")
|
1715 |
+
|
1716 |
+
|
1717 |
+
|
1718 |
+
|
1719 |
+
|
1720 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1721 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1722 |
+
|
1723 |
+
|
1724 |
+
def get_data_mnli(eval_mode='zero_shot', fillna=True, rank=True):
|
1725 |
+
|
1726 |
+
df_list = []
|
1727 |
+
|
1728 |
+
for model in MODEL_LIST:
|
1729 |
+
|
1730 |
+
|
1731 |
+
results_list = [ALL_RESULTS[model][eval_mode]['mnli'][res] for res in ALL_RESULTS[model][eval_mode]['mnli']]
|
1732 |
+
|
1733 |
+
|
1734 |
+
try:
|
1735 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1736 |
+
|
1737 |
+
except:
|
1738 |
+
print(results_list)
|
1739 |
+
accuracy = -1
|
1740 |
+
|
1741 |
+
|
1742 |
+
res = {
|
1743 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1744 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1745 |
+
"Accuracy": accuracy,
|
1746 |
+
}
|
1747 |
+
|
1748 |
+
df_list.append(res)
|
1749 |
+
|
1750 |
+
|
1751 |
+
df = pd.DataFrame(df_list)
|
1752 |
+
# If there are any models that are the same, merge them
|
1753 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1754 |
+
df = df.groupby("Model", as_index=False).first()
|
1755 |
+
# Put 'Model' column first
|
1756 |
+
#cols = sorted(list(df.columns))
|
1757 |
+
cols = list(df.columns)
|
1758 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1759 |
+
df = df[cols]
|
1760 |
+
|
1761 |
+
if rank:
|
1762 |
+
df = add_rank(df, compute_average=True)
|
1763 |
+
|
1764 |
+
if fillna:
|
1765 |
+
df.fillna("", inplace=True)
|
1766 |
+
|
1767 |
+
return df
|
1768 |
+
|
1769 |
+
|
1770 |
+
MNLI_ZERO_SHOT = get_data_mnli(eval_mode="zero_shot")
|
1771 |
+
MNLI_FIVE_SHOT = get_data_mnli(eval_mode="five_shot")
|
1772 |
+
|
1773 |
+
|
1774 |
+
|
1775 |
+
|
1776 |
+
|
1777 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1778 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1779 |
+
|
1780 |
+
|
1781 |
+
def get_data_qnli(eval_mode='zero_shot', fillna=True, rank=True):
|
1782 |
+
|
1783 |
+
df_list = []
|
1784 |
+
|
1785 |
+
for model in MODEL_LIST:
|
1786 |
+
|
1787 |
+
|
1788 |
+
results_list = [ALL_RESULTS[model][eval_mode]['qnli'][res] for res in ALL_RESULTS[model][eval_mode]['qnli']]
|
1789 |
+
|
1790 |
+
|
1791 |
+
try:
|
1792 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1793 |
+
|
1794 |
+
except:
|
1795 |
+
print(results_list)
|
1796 |
+
accuracy = -1
|
1797 |
+
|
1798 |
+
|
1799 |
+
res = {
|
1800 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1801 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1802 |
+
"Accuracy": accuracy,
|
1803 |
+
}
|
1804 |
+
|
1805 |
+
df_list.append(res)
|
1806 |
+
|
1807 |
+
|
1808 |
+
df = pd.DataFrame(df_list)
|
1809 |
+
# If there are any models that are the same, merge them
|
1810 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1811 |
+
df = df.groupby("Model", as_index=False).first()
|
1812 |
+
# Put 'Model' column first
|
1813 |
+
#cols = sorted(list(df.columns))
|
1814 |
+
cols = list(df.columns)
|
1815 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1816 |
+
df = df[cols]
|
1817 |
+
|
1818 |
+
if rank:
|
1819 |
+
df = add_rank(df, compute_average=True)
|
1820 |
+
|
1821 |
+
if fillna:
|
1822 |
+
df.fillna("", inplace=True)
|
1823 |
+
|
1824 |
+
return df
|
1825 |
+
|
1826 |
+
|
1827 |
+
QNLI_ZERO_SHOT = get_data_qnli(eval_mode="zero_shot")
|
1828 |
+
QNLI_FIVE_SHOT = get_data_qnli(eval_mode="five_shot")
|
1829 |
+
|
1830 |
+
|
1831 |
+
|
1832 |
+
|
1833 |
+
|
1834 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1835 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1836 |
+
|
1837 |
+
|
1838 |
+
def get_data_wnli(eval_mode='zero_shot', fillna=True, rank=True):
|
1839 |
+
|
1840 |
+
df_list = []
|
1841 |
+
|
1842 |
+
for model in MODEL_LIST:
|
1843 |
+
|
1844 |
+
|
1845 |
+
results_list = [ALL_RESULTS[model][eval_mode]['wnli'][res] for res in ALL_RESULTS[model][eval_mode]['wnli']]
|
1846 |
+
|
1847 |
+
|
1848 |
+
try:
|
1849 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1850 |
+
|
1851 |
+
except:
|
1852 |
+
print(results_list)
|
1853 |
+
accuracy = -1
|
1854 |
+
|
1855 |
+
|
1856 |
+
res = {
|
1857 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1858 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1859 |
+
"Accuracy": accuracy,
|
1860 |
+
}
|
1861 |
+
|
1862 |
+
df_list.append(res)
|
1863 |
+
|
1864 |
+
|
1865 |
+
df = pd.DataFrame(df_list)
|
1866 |
+
# If there are any models that are the same, merge them
|
1867 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1868 |
+
df = df.groupby("Model", as_index=False).first()
|
1869 |
+
# Put 'Model' column first
|
1870 |
+
#cols = sorted(list(df.columns))
|
1871 |
+
cols = list(df.columns)
|
1872 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1873 |
+
df = df[cols]
|
1874 |
+
|
1875 |
+
if rank:
|
1876 |
+
df = add_rank(df, compute_average=True)
|
1877 |
+
|
1878 |
+
if fillna:
|
1879 |
+
df.fillna("", inplace=True)
|
1880 |
+
|
1881 |
+
return df
|
1882 |
+
|
1883 |
+
|
1884 |
+
WNLI_ZERO_SHOT = get_data_wnli(eval_mode="zero_shot")
|
1885 |
+
WNLI_FIVE_SHOT = get_data_wnli(eval_mode="five_shot")
|
1886 |
+
|
1887 |
+
|
1888 |
+
|
1889 |
+
|
1890 |
+
|
1891 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1892 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1893 |
+
|
1894 |
+
|
1895 |
+
def get_data_rte(eval_mode='zero_shot', fillna=True, rank=True):
|
1896 |
+
|
1897 |
+
df_list = []
|
1898 |
+
|
1899 |
+
for model in MODEL_LIST:
|
1900 |
+
|
1901 |
+
|
1902 |
+
results_list = [ALL_RESULTS[model][eval_mode]['rte'][res] for res in ALL_RESULTS[model][eval_mode]['rte']]
|
1903 |
+
|
1904 |
+
|
1905 |
+
try:
|
1906 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1907 |
+
|
1908 |
+
except:
|
1909 |
+
print(results_list)
|
1910 |
+
accuracy = -1
|
1911 |
+
|
1912 |
+
|
1913 |
+
res = {
|
1914 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1915 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1916 |
+
"Accuracy": accuracy,
|
1917 |
+
}
|
1918 |
+
|
1919 |
+
df_list.append(res)
|
1920 |
+
|
1921 |
+
|
1922 |
+
df = pd.DataFrame(df_list)
|
1923 |
+
# If there are any models that are the same, merge them
|
1924 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1925 |
+
df = df.groupby("Model", as_index=False).first()
|
1926 |
+
# Put 'Model' column first
|
1927 |
+
#cols = sorted(list(df.columns))
|
1928 |
+
cols = list(df.columns)
|
1929 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1930 |
+
df = df[cols]
|
1931 |
+
|
1932 |
+
if rank:
|
1933 |
+
df = add_rank(df, compute_average=True)
|
1934 |
+
|
1935 |
+
if fillna:
|
1936 |
+
df.fillna("", inplace=True)
|
1937 |
+
|
1938 |
+
return df
|
1939 |
+
|
1940 |
+
|
1941 |
+
RTE_ZERO_SHOT = get_data_rte(eval_mode="zero_shot")
|
1942 |
+
RTE_FIVE_SHOT = get_data_rte(eval_mode="five_shot")
|
1943 |
+
|
1944 |
+
|
1945 |
+
|
1946 |
+
|
1947 |
+
|
1948 |
+
|
1949 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1950 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
1951 |
+
|
1952 |
+
|
1953 |
+
def get_data_mrpc(eval_mode='zero_shot', fillna=True, rank=True):
|
1954 |
+
|
1955 |
+
df_list = []
|
1956 |
+
|
1957 |
+
for model in MODEL_LIST:
|
1958 |
+
|
1959 |
+
|
1960 |
+
results_list = [ALL_RESULTS[model][eval_mode]['mrpc'][res] for res in ALL_RESULTS[model][eval_mode]['mrpc']]
|
1961 |
+
|
1962 |
+
|
1963 |
+
try:
|
1964 |
+
accuracy = median([results['accuracy'] for results in results_list])
|
1965 |
+
|
1966 |
+
except:
|
1967 |
+
print(results_list)
|
1968 |
+
accuracy = -1
|
1969 |
+
|
1970 |
+
|
1971 |
+
res = {
|
1972 |
+
"Model Size (Params)": MODEL_TO_SIZE.get(model, ""),
|
1973 |
+
"Model": make_clickable_model(model, link=ALL_RESULTS[model]["model_link"]),
|
1974 |
+
"Accuracy": accuracy,
|
1975 |
+
}
|
1976 |
+
|
1977 |
+
df_list.append(res)
|
1978 |
+
|
1979 |
+
|
1980 |
+
df = pd.DataFrame(df_list)
|
1981 |
+
# If there are any models that are the same, merge them
|
1982 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
1983 |
+
df = df.groupby("Model", as_index=False).first()
|
1984 |
+
# Put 'Model' column first
|
1985 |
+
#cols = sorted(list(df.columns))
|
1986 |
+
cols = list(df.columns)
|
1987 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
1988 |
+
df = df[cols]
|
1989 |
+
|
1990 |
+
if rank:
|
1991 |
+
df = add_rank(df, compute_average=True)
|
1992 |
+
|
1993 |
+
if fillna:
|
1994 |
+
df.fillna("", inplace=True)
|
1995 |
+
|
1996 |
+
return df
|
1997 |
+
|
1998 |
+
|
1999 |
+
MRPC_ZERO_SHOT = get_data_mrpc(eval_mode="zero_shot")
|
2000 |
+
MRPC_FIVE_SHOT = get_data_mrpc(eval_mode="five_shot")
|
2001 |
+
|
2002 |
+
|
2003 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2004 |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
2005 |
|
2006 |
+
block = gr.Blocks()
|
2007 |
+
with block:
|
2008 |
+
|
2009 |
+
gr.Markdown(f"""
|
2010 |
+
SeaEval Leaderboard. To submit, refer to the <a href="https://seaeval.github.io/" target="_blank" style="text-decoration: underline">SeaEval Website</a>. Refer to the [SeaEval paper](https://arxiv.org/abs/2309.04766) for details on metrics, tasks and models.
|
2011 |
+
|
2012 |
+
- **Total Datasets**: 31
|
2013 |
+
- **Total Languages**: 8
|
2014 |
+
- **Total Models**: {NUM_MODELS}
|
2015 |
+
- **Mode of Evaluation**: Zero-Shot, Five-Shot
|
2016 |
+
|
2017 |
+
The following table shows the performance of the models on the SeaEval benchmark.
|
2018 |
+
|
2019 |
+
""")
|
2020 |
+
|
2021 |
+
with gr.Tabs():
|
2022 |
+
|
2023 |
+
|
2024 |
+
# dataset 1: cross-mmlu
|
2025 |
+
with gr.TabItem("Cross-MMLU"):
|
2026 |
+
with gr.Row():
|
2027 |
+
gr.Markdown("""
|
2028 |
+
**Cross-MMLU Leaderboard** 🔮
|
2029 |
+
|
2030 |
+
- **Metric:** Cross-Lingual Consistency, Accuracy, AC3
|
2031 |
+
- **Languages:** English, Chinese, Malay, Indonesian, Spanish, Vietnamese, Filipino
|
2032 |
+
""")
|
2033 |
+
|
2034 |
+
with gr.TabItem("zero_shot"):
|
2035 |
+
|
2036 |
+
|
2037 |
+
with gr.TabItem("Overall"):
|
2038 |
+
|
2039 |
+
with gr.Row():
|
2040 |
+
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
|
2041 |
+
CROSS_MMLU_ZERO_SHOT_OVERALL,
|
2042 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_ZERO_SHOT_OVERALL.columns),
|
2043 |
+
type="pandas",
|
2044 |
+
)
|
2045 |
+
|
2046 |
+
|
2047 |
+
with gr.TabItem("Language Performance"):
|
2048 |
+
|
2049 |
+
with gr.Row():
|
2050 |
+
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
|
2051 |
+
CROSS_MMLU_ZERO_SHOT_LANGUAGE,
|
2052 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_ZERO_SHOT_LANGUAGE.columns),
|
2053 |
+
type="pandas",
|
2054 |
+
)
|
2055 |
+
|
2056 |
+
|
2057 |
+
with gr.TabItem("five_shot"):
|
2058 |
+
|
2059 |
+
|
2060 |
+
with gr.TabItem("Overall"):
|
2061 |
+
|
2062 |
+
with gr.Row():
|
2063 |
+
cross_mmlu_zero_shot_overall = gr.components.Dataframe(
|
2064 |
+
CROSS_MMLU_FIVE_SHOT_OVERALL,
|
2065 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_FIVE_SHOT_OVERALL.columns),
|
2066 |
+
type="pandas",
|
2067 |
+
)
|
2068 |
+
|
2069 |
+
|
2070 |
+
with gr.TabItem("Language Performance"):
|
2071 |
+
|
2072 |
+
with gr.Row():
|
2073 |
+
gr.components.Dataframe(
|
2074 |
+
CROSS_MMLU_FIVE_SHOT_LANGUAGE,
|
2075 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_MMLU_FIVE_SHOT_LANGUAGE.columns),
|
2076 |
+
type="pandas",
|
2077 |
+
)
|
2078 |
+
|
2079 |
+
|
2080 |
+
|
2081 |
+
# dataset 2: cross-logiqa
|
2082 |
+
with gr.TabItem("Cross-LogiQA"):
|
2083 |
+
with gr.Row():
|
2084 |
+
gr.Markdown("""
|
2085 |
+
**Cross-LogiQA Leaderboard** 🔮
|
2086 |
+
|
2087 |
+
- **Metric:** Cross-Lingual Consistency, Accuracy, AC3
|
2088 |
+
- **Languages:** English, Chinese, Malay, Indonesian, Spanish, Vietnamese, Filipino
|
2089 |
+
""")
|
2090 |
+
|
2091 |
+
with gr.TabItem("zero_shot"):
|
2092 |
+
|
2093 |
+
|
2094 |
+
with gr.TabItem("Overall"):
|
2095 |
+
|
2096 |
+
with gr.Row():
|
2097 |
+
gr.components.Dataframe(
|
2098 |
+
CROSS_LOGIQA_ZERO_SHOT_OVERALL,
|
2099 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_ZERO_SHOT_OVERALL.columns),
|
2100 |
+
type="pandas",
|
2101 |
+
)
|
2102 |
+
|
2103 |
+
|
2104 |
+
with gr.TabItem("Language Performance"):
|
2105 |
+
|
2106 |
+
with gr.Row():
|
2107 |
+
gr.components.Dataframe(
|
2108 |
+
CROSS_LOGIQA_ZERO_SHOT_LANGUAGE,
|
2109 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_ZERO_SHOT_LANGUAGE.columns),
|
2110 |
+
type="pandas",
|
2111 |
+
)
|
2112 |
+
|
2113 |
+
|
2114 |
+
with gr.TabItem("five_shot"):
|
2115 |
+
|
2116 |
+
|
2117 |
+
with gr.TabItem("Overall"):
|
2118 |
+
|
2119 |
+
with gr.Row():
|
2120 |
+
gr.components.Dataframe(
|
2121 |
+
CROSS_LOGIQA_FIVE_SHOT_OVERALL,
|
2122 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_FIVE_SHOT_OVERALL.columns),
|
2123 |
+
type="pandas",
|
2124 |
+
)
|
2125 |
+
|
2126 |
+
|
2127 |
+
with gr.TabItem("Language Performance"):
|
2128 |
+
|
2129 |
+
with gr.Row():
|
2130 |
+
gr.components.Dataframe(
|
2131 |
+
CROSS_LOGIQA_FIVE_SHOT_LANGUAGE,
|
2132 |
+
datatype=["number", "markdown"] + ["number"] * len(CROSS_LOGIQA_FIVE_SHOT_LANGUAGE.columns),
|
2133 |
+
type="pandas",
|
2134 |
+
)
|
2135 |
+
|
2136 |
+
|
2137 |
+
# dataset 3: SG_EVAL
|
2138 |
+
with gr.TabItem("SG_EVAL"):
|
2139 |
+
with gr.Row():
|
2140 |
+
gr.Markdown("""
|
2141 |
+
**SG_EVAL Leaderboard** 🔮
|
2142 |
+
|
2143 |
+
- **Metric:** Accuracy
|
2144 |
+
- **Languages:** English
|
2145 |
+
""")
|
2146 |
+
|
2147 |
+
with gr.TabItem("zero_shot"):
|
2148 |
+
with gr.TabItem("Overall"):
|
2149 |
+
with gr.Row():
|
2150 |
+
gr.components.Dataframe(
|
2151 |
+
SG_EVAL_ZERO_SHOT,
|
2152 |
+
datatype=["number", "markdown"] + ["number"] * len(SG_EVAL_ZERO_SHOT.columns),
|
2153 |
+
type="pandas",
|
2154 |
+
)
|
2155 |
+
|
2156 |
+
with gr.TabItem("five_shot"):
|
2157 |
+
with gr.TabItem("Overall"):
|
2158 |
+
with gr.Row():
|
2159 |
+
gr.components.Dataframe(
|
2160 |
+
SG_EVAL_FIVE_SHOT,
|
2161 |
+
datatype=["number", "markdown"] + ["number"] * len(SG_EVAL_FIVE_SHOT.columns),
|
2162 |
+
type="pandas",
|
2163 |
+
)
|
2164 |
+
|
2165 |
+
|
2166 |
+
# dataset 4:
|
2167 |
+
with gr.TabItem("US_EVAL"):
|
2168 |
+
with gr.Row():
|
2169 |
+
gr.Markdown("""
|
2170 |
+
**US_EVAL Leaderboard** 🔮
|
2171 |
+
|
2172 |
+
- **Metric:** Accuracy
|
2173 |
+
- **Languages:** English
|
2174 |
+
""")
|
2175 |
+
|
2176 |
+
with gr.TabItem("zero_shot"):
|
2177 |
+
with gr.TabItem("Overall"):
|
2178 |
+
with gr.Row():
|
2179 |
+
gr.components.Dataframe(
|
2180 |
+
US_EVAL_ZERO_SHOT,
|
2181 |
+
datatype=["number", "markdown"] + ["number"] * len(US_EVAL_ZERO_SHOT.columns),
|
2182 |
+
type="pandas",
|
2183 |
+
)
|
2184 |
+
|
2185 |
+
with gr.TabItem("five_shot"):
|
2186 |
+
with gr.TabItem("Overall"):
|
2187 |
+
with gr.Row():
|
2188 |
+
gr.components.Dataframe(
|
2189 |
+
US_EVAL_FIVE_SHOT,
|
2190 |
+
datatype=["number", "markdown"] + ["number"] * len(US_EVAL_FIVE_SHOT.columns),
|
2191 |
+
type="pandas",
|
2192 |
+
)
|
2193 |
+
|
2194 |
+
|
2195 |
+
# dataset 5:
|
2196 |
+
with gr.TabItem("CN_EVAL"):
|
2197 |
+
with gr.Row():
|
2198 |
+
gr.Markdown("""
|
2199 |
+
**CN_EVAL Leaderboard** 🔮
|
2200 |
+
|
2201 |
+
- **Metric:** Accuracy
|
2202 |
+
- **Languages:** Chinese
|
2203 |
+
""")
|
2204 |
+
|
2205 |
+
with gr.TabItem("zero_shot"):
|
2206 |
+
with gr.TabItem("Overall"):
|
2207 |
+
with gr.Row():
|
2208 |
+
gr.components.Dataframe(
|
2209 |
+
CN_EVAL_ZERO_SHOT,
|
2210 |
+
datatype=["number", "markdown"] + ["number"] * len(CN_EVAL_ZERO_SHOT.columns),
|
2211 |
+
type="pandas",
|
2212 |
+
)
|
2213 |
+
|
2214 |
+
with gr.TabItem("five_shot"):
|
2215 |
+
with gr.TabItem("Overall"):
|
2216 |
+
with gr.Row():
|
2217 |
+
gr.components.Dataframe(
|
2218 |
+
CN_EVAL_FIVE_SHOT,
|
2219 |
+
datatype=["number", "markdown"] + ["number"] * len(CN_EVAL_FIVE_SHOT.columns),
|
2220 |
+
type="pandas",
|
2221 |
+
)
|
2222 |
+
|
2223 |
|
2224 |
+
|
2225 |
+
# dataset 6:
|
2226 |
+
with gr.TabItem("PH_EVAL"):
|
2227 |
+
with gr.Row():
|
2228 |
+
gr.Markdown("""
|
2229 |
+
**PH_EVAL Leaderboard** 🔮
|
2230 |
+
|
2231 |
+
- **Metric:** Accuracy
|
2232 |
+
- **Languages:** English
|
2233 |
+
""")
|
2234 |
+
|
2235 |
+
with gr.TabItem("zero_shot"):
|
2236 |
+
with gr.TabItem("Overall"):
|
2237 |
+
with gr.Row():
|
2238 |
+
gr.components.Dataframe(
|
2239 |
+
PH_EVAL_ZERO_SHOT,
|
2240 |
+
datatype=["number", "markdown"] + ["number"] * len(PH_EVAL_ZERO_SHOT.columns),
|
2241 |
+
type="pandas",
|
2242 |
+
)
|
2243 |
+
|
2244 |
+
with gr.TabItem("five_shot"):
|
2245 |
+
with gr.TabItem("Overall"):
|
2246 |
+
with gr.Row():
|
2247 |
+
gr.components.Dataframe(
|
2248 |
+
PH_EVAL_FIVE_SHOT,
|
2249 |
+
datatype=["number", "markdown"] + ["number"] * len(PH_EVAL_FIVE_SHOT.columns),
|
2250 |
+
type="pandas",
|
2251 |
+
)
|
2252 |
+
|
2253 |
+
|
2254 |
+
# dataset 7:
|
2255 |
+
with gr.TabItem("Singlish to English Translation"):
|
2256 |
+
with gr.Row():
|
2257 |
+
gr.Markdown("""
|
2258 |
+
**SING2ENG Leaderboard** 🔮
|
2259 |
+
|
2260 |
+
- **Metric:** BLEU Avg.
|
2261 |
+
- **Languages:** English
|
2262 |
+
""")
|
2263 |
+
|
2264 |
+
with gr.TabItem("zero_shot"):
|
2265 |
+
with gr.TabItem("Overall"):
|
2266 |
+
with gr.Row():
|
2267 |
+
gr.components.Dataframe(
|
2268 |
+
SING2ENG_ZERO_SHOT,
|
2269 |
+
datatype=["number", "markdown"] + ["number"] * len(SING2ENG_ZERO_SHOT.columns),
|
2270 |
+
type="pandas",
|
2271 |
+
)
|
2272 |
+
|
2273 |
+
with gr.TabItem("five_shot"):
|
2274 |
+
with gr.TabItem("Overall"):
|
2275 |
+
with gr.Row():
|
2276 |
+
gr.components.Dataframe(
|
2277 |
+
SING2ENG_FIVE_SHOT,
|
2278 |
+
datatype=["number", "markdown"] + ["number"] * len(SING2ENG_FIVE_SHOT.columns),
|
2279 |
+
type="pandas",
|
2280 |
+
)
|
2281 |
+
|
2282 |
+
|
2283 |
+
gr.Markdown(f"""
|
2284 |
+
The following are datasets that are not originally collected by SeaEval, but are included in the leaderboard for completeness.
|
2285 |
""")
|
2286 |
+
|
2287 |
with gr.Tabs():
|
2288 |
|
2289 |
|
2290 |
+
|
2291 |
+
|
2292 |
+
# dataset 8:
|
2293 |
+
with gr.TabItem("FLORES Indonesian to English Translation"):
|
2294 |
with gr.Row():
|
2295 |
gr.Markdown("""
|
2296 |
+
**flores_ind2eng Leaderboard** 🔮
|
2297 |
|
2298 |
+
- **Metric:** BLEU Avg.
|
2299 |
+
- **Languages:** English
|
2300 |
""")
|
2301 |
|
2302 |
with gr.TabItem("zero_shot"):
|
2303 |
+
with gr.TabItem("Overall"):
|
2304 |
+
with gr.Row():
|
2305 |
+
gr.components.Dataframe(
|
2306 |
+
FLORES_IND2ENG_ZERO_SHOT,
|
2307 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_IND2ENG_ZERO_SHOT.columns),
|
2308 |
+
type="pandas",
|
2309 |
+
)
|
2310 |
+
|
2311 |
+
with gr.TabItem("five_shot"):
|
2312 |
+
with gr.TabItem("Overall"):
|
2313 |
+
with gr.Row():
|
2314 |
+
gr.components.Dataframe(
|
2315 |
+
FLORES_IND2ENG_FIVE_SHOT,
|
2316 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_IND2ENG_FIVE_SHOT.columns),
|
2317 |
+
type="pandas",
|
2318 |
+
)
|
2319 |
+
|
2320 |
|
2321 |
+
# dataset 9:
|
2322 |
+
with gr.TabItem("FLORES Vitenamese to English Translation"):
|
2323 |
+
with gr.Row():
|
2324 |
+
gr.Markdown("""
|
2325 |
+
**flores_vie2eng Leaderboard** 🔮
|
2326 |
+
|
2327 |
+
- **Metric:** BLEU Avg.
|
2328 |
+
- **Languages:** English
|
2329 |
+
""")
|
2330 |
|
2331 |
+
with gr.TabItem("zero_shot"):
|
2332 |
with gr.TabItem("Overall"):
|
2333 |
+
with gr.Row():
|
2334 |
+
gr.components.Dataframe(
|
2335 |
+
FLORES_VIE2ENG_ZERO_SHOT,
|
2336 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_VIE2ENG_ZERO_SHOT.columns),
|
2337 |
+
type="pandas",
|
2338 |
+
)
|
2339 |
|
2340 |
+
with gr.TabItem("five_shot"):
|
2341 |
+
with gr.TabItem("Overall"):
|
2342 |
with gr.Row():
|
2343 |
+
gr.components.Dataframe(
|
2344 |
+
FLORES_VIE2ENG_FIVE_SHOT,
|
2345 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_VIE2ENG_FIVE_SHOT.columns),
|
2346 |
type="pandas",
|
2347 |
)
|
2348 |
|
2349 |
|
|
|
2350 |
|
2351 |
+
# dataset 10:
|
2352 |
+
with gr.TabItem("FLORES Chinese to English Translation"):
|
2353 |
+
with gr.Row():
|
2354 |
+
gr.Markdown("""
|
2355 |
+
**flores_zho2eng Leaderboard** 🔮
|
2356 |
+
|
2357 |
+
- **Metric:** BLEU Avg.
|
2358 |
+
- **Languages:** English
|
2359 |
+
""")
|
2360 |
+
|
2361 |
+
with gr.TabItem("zero_shot"):
|
2362 |
+
with gr.TabItem("Overall"):
|
2363 |
with gr.Row():
|
2364 |
+
gr.components.Dataframe(
|
2365 |
+
FLORES_ZHO2ENG_ZERO_SHOT,
|
2366 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_ZHO2ENG_ZERO_SHOT.columns),
|
2367 |
+
type="pandas",
|
2368 |
+
)
|
2369 |
+
|
2370 |
+
with gr.TabItem("five_shot"):
|
2371 |
+
with gr.TabItem("Overall"):
|
2372 |
+
with gr.Row():
|
2373 |
+
gr.components.Dataframe(
|
2374 |
+
FLORES_ZHO2ENG_FIVE_SHOT,
|
2375 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_ZHO2ENG_FIVE_SHOT.columns),
|
2376 |
+
type="pandas",
|
2377 |
+
)
|
2378 |
+
|
2379 |
+
|
2380 |
+
|
2381 |
+
# dataset 11:
|
2382 |
+
with gr.TabItem("FLORES Malay to English Translation"):
|
2383 |
+
with gr.Row():
|
2384 |
+
gr.Markdown("""
|
2385 |
+
**flores_zsm2eng Leaderboard** 🔮
|
2386 |
+
|
2387 |
+
- **Metric:** BLEU Avg.
|
2388 |
+
- **Languages:** English
|
2389 |
+
""")
|
2390 |
+
|
2391 |
+
with gr.TabItem("zero_shot"):
|
2392 |
+
with gr.TabItem("Overall"):
|
2393 |
+
with gr.Row():
|
2394 |
+
gr.components.Dataframe(
|
2395 |
+
FLORES_ZSM2ENG_ZERO_SHOT,
|
2396 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_ZSM2ENG_ZERO_SHOT.columns),
|
2397 |
+
type="pandas",
|
2398 |
+
)
|
2399 |
+
|
2400 |
+
with gr.TabItem("five_shot"):
|
2401 |
+
with gr.TabItem("Overall"):
|
2402 |
+
with gr.Row():
|
2403 |
+
gr.components.Dataframe(
|
2404 |
+
FLORES_ZSM2ENG_FIVE_SHOT,
|
2405 |
+
datatype=["number", "markdown"] + ["number"] * len(FLORES_ZSM2ENG_FIVE_SHOT.columns),
|
2406 |
type="pandas",
|
2407 |
)
|
2408 |
|
2409 |
|
2410 |
+
# dataset 12:
|
2411 |
+
with gr.TabItem("MMLU"):
|
2412 |
+
with gr.Row():
|
2413 |
+
gr.Markdown("""
|
2414 |
+
**MMLU Leaderboard** 🔮
|
2415 |
+
|
2416 |
+
- **Metric:** Accuracy.
|
2417 |
+
- **Languages:** English
|
2418 |
+
""")
|
2419 |
+
|
2420 |
+
with gr.TabItem("zero_shot"):
|
2421 |
+
with gr.TabItem("Overall"):
|
2422 |
+
with gr.Row():
|
2423 |
+
gr.components.Dataframe(
|
2424 |
+
MMLU_ZERO_SHOT,
|
2425 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_ZERO_SHOT.columns),
|
2426 |
+
type="pandas",
|
2427 |
+
)
|
2428 |
+
|
2429 |
with gr.TabItem("five_shot"):
|
2430 |
+
with gr.TabItem("Overall"):
|
2431 |
+
with gr.Row():
|
2432 |
+
gr.components.Dataframe(
|
2433 |
+
MMLU_FIVE_SHOT,
|
2434 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_FIVE_SHOT.columns),
|
2435 |
+
type="pandas",
|
2436 |
+
)
|
2437 |
+
|
2438 |
+
|
2439 |
+
# dataset 13:
|
2440 |
+
with gr.TabItem("MMLU Full"):
|
2441 |
+
with gr.Row():
|
2442 |
+
gr.Markdown("""
|
2443 |
+
**MMLU Full Leaderboard** 🔮
|
2444 |
+
|
2445 |
+
- **Metric:** Accuracy.
|
2446 |
+
- **Languages:** English
|
2447 |
+
""")
|
2448 |
+
|
2449 |
+
with gr.TabItem("zero_shot"):
|
2450 |
+
with gr.TabItem("Overall"):
|
2451 |
+
with gr.Row():
|
2452 |
+
gr.components.Dataframe(
|
2453 |
+
MMLU_FULL_ZERO_SHOT,
|
2454 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_FULL_ZERO_SHOT.columns),
|
2455 |
+
type="pandas",
|
2456 |
+
)
|
2457 |
|
2458 |
|
2459 |
+
|
2460 |
+
with gr.TabItem("five_shot"):
|
2461 |
with gr.TabItem("Overall"):
|
2462 |
+
with gr.Row():
|
2463 |
+
gr.components.Dataframe(
|
2464 |
+
MMLU_FULL_FIVE_SHOT,
|
2465 |
+
datatype=["number", "markdown"] + ["number"] * len(MMLU_FULL_FIVE_SHOT.columns),
|
2466 |
+
type="pandas",
|
2467 |
+
)
|
2468 |
+
|
2469 |
+
# dataset 14:
|
2470 |
+
with gr.TabItem("C_EVAL"):
|
2471 |
+
with gr.Row():
|
2472 |
+
gr.Markdown("""
|
2473 |
+
**C_EVAL Leaderboard** 🔮
|
2474 |
+
|
2475 |
+
- **Metric:** Accuracy.
|
2476 |
+
- **Languages:** Chinese
|
2477 |
+
""")
|
2478 |
|
2479 |
+
with gr.TabItem("zero_shot"):
|
2480 |
+
with gr.TabItem("Overall"):
|
2481 |
with gr.Row():
|
2482 |
+
gr.components.Dataframe(
|
2483 |
+
C_EVAL_ZERO_SHOT,
|
2484 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_ZERO_SHOT.columns),
|
2485 |
type="pandas",
|
2486 |
)
|
2487 |
|
2488 |
|
|
|
2489 |
|
2490 |
+
with gr.TabItem("five_shot"):
|
2491 |
+
with gr.TabItem("Overall"):
|
2492 |
with gr.Row():
|
2493 |
gr.components.Dataframe(
|
2494 |
+
C_EVAL_FIVE_SHOT,
|
2495 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_FIVE_SHOT.columns),
|
2496 |
type="pandas",
|
2497 |
)
|
2498 |
|
2499 |
|
2500 |
+
# dataset 15:
|
2501 |
+
with gr.TabItem("C_EVAL Full"):
|
|
|
2502 |
with gr.Row():
|
2503 |
gr.Markdown("""
|
2504 |
+
**C_EVAL Full Leaderboard** 🔮
|
2505 |
|
2506 |
+
- **Metric:** Accuracy.
|
2507 |
+
- **Languages:** Chinese
|
2508 |
""")
|
2509 |
|
2510 |
with gr.TabItem("zero_shot"):
|
|
|
|
|
2511 |
with gr.TabItem("Overall"):
|
|
|
2512 |
with gr.Row():
|
2513 |
gr.components.Dataframe(
|
2514 |
+
C_EVAL_FULL_ZERO_SHOT,
|
2515 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_FULL_ZERO_SHOT.columns),
|
2516 |
type="pandas",
|
2517 |
)
|
2518 |
|
2519 |
|
|
|
2520 |
|
2521 |
+
with gr.TabItem("five_shot"):
|
2522 |
+
with gr.TabItem("Overall"):
|
2523 |
with gr.Row():
|
2524 |
gr.components.Dataframe(
|
2525 |
+
C_EVAL_FULL_FIVE_SHOT,
|
2526 |
+
datatype=["number", "markdown"] + ["number"] * len(C_EVAL_FULL_FIVE_SHOT.columns),
|
2527 |
type="pandas",
|
2528 |
)
|
2529 |
|
2530 |
+
# dataset 16:
|
2531 |
+
with gr.TabItem("CMMLU"):
|
2532 |
+
with gr.Row():
|
2533 |
+
gr.Markdown("""
|
2534 |
+
**CMMLU Leaderboard** 🔮
|
2535 |
+
|
2536 |
+
- **Metric:** Accuracy.
|
2537 |
+
- **Languages:** Chinese
|
2538 |
+
""")
|
2539 |
|
2540 |
+
with gr.TabItem("zero_shot"):
|
|
|
|
|
2541 |
with gr.TabItem("Overall"):
|
|
|
2542 |
with gr.Row():
|
2543 |
gr.components.Dataframe(
|
2544 |
+
CMMLU_ZERO_SHOT,
|
2545 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_ZERO_SHOT.columns),
|
2546 |
type="pandas",
|
2547 |
)
|
2548 |
|
2549 |
|
|
|
2550 |
|
2551 |
+
with gr.TabItem("five_shot"):
|
2552 |
+
with gr.TabItem("Overall"):
|
2553 |
with gr.Row():
|
2554 |
gr.components.Dataframe(
|
2555 |
+
CMMLU_FIVE_SHOT,
|
2556 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_FIVE_SHOT.columns),
|
2557 |
type="pandas",
|
2558 |
)
|
2559 |
|
2560 |
+
# dataset 17:
|
2561 |
+
with gr.TabItem("CMMLU Full"):
|
|
|
2562 |
with gr.Row():
|
2563 |
gr.Markdown("""
|
2564 |
+
**CMMLU Full Leaderboard** 🔮
|
2565 |
|
2566 |
+
- **Metric:** Accuracy.
|
2567 |
+
- **Languages:** Chinese
|
2568 |
""")
|
2569 |
|
2570 |
with gr.TabItem("zero_shot"):
|
2571 |
with gr.TabItem("Overall"):
|
2572 |
with gr.Row():
|
2573 |
gr.components.Dataframe(
|
2574 |
+
CMMLU_FULL_ZERO_SHOT,
|
2575 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_FULL_ZERO_SHOT.columns),
|
2576 |
type="pandas",
|
2577 |
)
|
2578 |
|
2579 |
+
|
2580 |
+
|
2581 |
with gr.TabItem("five_shot"):
|
2582 |
with gr.TabItem("Overall"):
|
2583 |
with gr.Row():
|
2584 |
gr.components.Dataframe(
|
2585 |
+
CMMLU_FULL_FIVE_SHOT,
|
2586 |
+
datatype=["number", "markdown"] + ["number"] * len(CMMLU_FULL_FIVE_SHOT.columns),
|
2587 |
type="pandas",
|
2588 |
)
|
2589 |
|
2590 |
+
# dataset 18:
|
2591 |
+
with gr.TabItem("ZBench"):
|
|
|
2592 |
with gr.Row():
|
2593 |
gr.Markdown("""
|
2594 |
+
**ZBench Leaderboard** 🔮
|
2595 |
|
2596 |
+
- **Metric:** Accuracy.
|
2597 |
+
- **Languages:** Chinese
|
2598 |
""")
|
2599 |
|
2600 |
with gr.TabItem("zero_shot"):
|
2601 |
with gr.TabItem("Overall"):
|
2602 |
with gr.Row():
|
2603 |
gr.components.Dataframe(
|
2604 |
+
ZBENCH_ZERO_SHOT,
|
2605 |
+
datatype=["number", "markdown"] + ["number"] * len(ZBENCH_ZERO_SHOT.columns),
|
2606 |
type="pandas",
|
2607 |
)
|
2608 |
|
2609 |
+
|
2610 |
+
|
2611 |
with gr.TabItem("five_shot"):
|
2612 |
with gr.TabItem("Overall"):
|
2613 |
with gr.Row():
|
2614 |
gr.components.Dataframe(
|
2615 |
+
ZBENCH_FIVE_SHOT,
|
2616 |
+
datatype=["number", "markdown"] + ["number"] * len(ZBENCH_FIVE_SHOT.columns),
|
2617 |
type="pandas",
|
2618 |
)
|
2619 |
|
2620 |
|
2621 |
+
# dataset 18:
|
2622 |
+
with gr.TabItem("ind_emotion"):
|
2623 |
with gr.Row():
|
2624 |
gr.Markdown("""
|
2625 |
+
**ind_emotion Leaderboard** 🔮
|
2626 |
|
2627 |
+
- **Metric:** Accuracy.
|
2628 |
+
- **Languages:** Indonesian
|
2629 |
""")
|
2630 |
|
2631 |
with gr.TabItem("zero_shot"):
|
2632 |
with gr.TabItem("Overall"):
|
2633 |
with gr.Row():
|
2634 |
gr.components.Dataframe(
|
2635 |
+
IND_EMOTION_ZERO_SHOT,
|
2636 |
+
datatype=["number", "markdown"] + ["number"] * len(IND_EMOTION_ZERO_SHOT.columns),
|
2637 |
type="pandas",
|
2638 |
)
|
2639 |
|
2640 |
+
|
2641 |
+
|
2642 |
with gr.TabItem("five_shot"):
|
2643 |
with gr.TabItem("Overall"):
|
2644 |
with gr.Row():
|
2645 |
gr.components.Dataframe(
|
2646 |
+
IND_EMOTION_ZERO_SHOT,
|
2647 |
+
datatype=["number", "markdown"] + ["number"] * len(IND_EMOTION_ZERO_SHOT.columns),
|
2648 |
type="pandas",
|
2649 |
)
|
2650 |
|
2651 |
|
2652 |
+
# dataset
|
2653 |
+
with gr.TabItem("OCNLI"):
|
|
|
2654 |
with gr.Row():
|
2655 |
gr.Markdown("""
|
2656 |
+
**OCNLI Leaderboard** 🔮
|
2657 |
|
2658 |
+
- **Metric:** Accuracy.
|
2659 |
+
- **Languages:** Chinese
|
2660 |
""")
|
2661 |
|
2662 |
with gr.TabItem("zero_shot"):
|
2663 |
with gr.TabItem("Overall"):
|
2664 |
with gr.Row():
|
2665 |
gr.components.Dataframe(
|
2666 |
+
OCNLI_ZERO_SHOT,
|
2667 |
+
datatype=["number", "markdown"] + ["number"] * len(OCNLI_ZERO_SHOT.columns),
|
2668 |
type="pandas",
|
2669 |
)
|
2670 |
|
2671 |
+
|
2672 |
+
|
2673 |
with gr.TabItem("five_shot"):
|
2674 |
with gr.TabItem("Overall"):
|
2675 |
with gr.Row():
|
2676 |
gr.components.Dataframe(
|
2677 |
+
OCNLI_FIVE_SHOT,
|
2678 |
+
datatype=["number", "markdown"] + ["number"] * len(OCNLI_FIVE_SHOT.columns),
|
2679 |
type="pandas",
|
2680 |
)
|
2681 |
|
2682 |
+
# dataset
|
2683 |
+
with gr.TabItem("C3"):
|
|
|
2684 |
with gr.Row():
|
2685 |
gr.Markdown("""
|
2686 |
+
**C3 Leaderboard** 🔮
|
2687 |
|
2688 |
+
- **Metric:** Accuracy.
|
2689 |
+
- **Languages:** Chinese
|
2690 |
""")
|
2691 |
|
2692 |
with gr.TabItem("zero_shot"):
|
2693 |
with gr.TabItem("Overall"):
|
2694 |
with gr.Row():
|
2695 |
gr.components.Dataframe(
|
2696 |
+
C3_ZERO_SHOT,
|
2697 |
+
datatype=["number", "markdown"] + ["number"] * len(C3_ZERO_SHOT.columns),
|
2698 |
type="pandas",
|
2699 |
)
|
2700 |
|
2701 |
+
|
2702 |
+
|
2703 |
with gr.TabItem("five_shot"):
|
2704 |
with gr.TabItem("Overall"):
|
2705 |
with gr.Row():
|
2706 |
gr.components.Dataframe(
|
2707 |
+
C3_FIVE_SHOT,
|
2708 |
+
datatype=["number", "markdown"] + ["number"] * len(C3_FIVE_SHOT.columns),
|
2709 |
type="pandas",
|
2710 |
)
|
2711 |
|
2712 |
|
2713 |
+
# dataset
|
2714 |
+
with gr.TabItem("DREAM"):
|
2715 |
with gr.Row():
|
2716 |
gr.Markdown("""
|
2717 |
+
**DREAM Leaderboard** 🔮
|
2718 |
|
2719 |
+
- **Metric:** Accuracy.
|
2720 |
- **Languages:** English
|
2721 |
""")
|
2722 |
|
|
|
2724 |
with gr.TabItem("Overall"):
|
2725 |
with gr.Row():
|
2726 |
gr.components.Dataframe(
|
2727 |
+
DREAM_ZERO_SHOT,
|
2728 |
+
datatype=["number", "markdown"] + ["number"] * len(DREAM_ZERO_SHOT.columns),
|
2729 |
type="pandas",
|
2730 |
)
|
2731 |
|
2732 |
+
|
2733 |
+
|
2734 |
with gr.TabItem("five_shot"):
|
2735 |
with gr.TabItem("Overall"):
|
2736 |
with gr.Row():
|
2737 |
gr.components.Dataframe(
|
2738 |
+
DREAM_FIVE_SHOT,
|
2739 |
+
datatype=["number", "markdown"] + ["number"] * len(DREAM_FIVE_SHOT.columns),
|
2740 |
type="pandas",
|
2741 |
)
|
2742 |
|
2743 |
+
# dataset
|
2744 |
+
with gr.TabItem("SAMSum"):
|
|
|
2745 |
with gr.Row():
|
2746 |
gr.Markdown("""
|
2747 |
+
**SAMSum Leaderboard** 🔮
|
2748 |
|
2749 |
+
- **Metric:** ROUGE.
|
2750 |
- **Languages:** English
|
2751 |
""")
|
2752 |
|
|
|
2754 |
with gr.TabItem("Overall"):
|
2755 |
with gr.Row():
|
2756 |
gr.components.Dataframe(
|
2757 |
+
SAMSUM_ZERO_SHOT,
|
2758 |
+
datatype=["number", "markdown"] + ["number"] * len(SAMSUM_ZERO_SHOT.columns),
|
2759 |
type="pandas",
|
2760 |
)
|
2761 |
|
2762 |
+
|
2763 |
+
|
2764 |
with gr.TabItem("five_shot"):
|
2765 |
with gr.TabItem("Overall"):
|
2766 |
with gr.Row():
|
2767 |
gr.components.Dataframe(
|
2768 |
+
SAMSUM_FIVE_SHOT,
|
2769 |
+
datatype=["number", "markdown"] + ["number"] * len(SAMSUM_FIVE_SHOT.columns),
|
2770 |
type="pandas",
|
2771 |
)
|
2772 |
|
2773 |
|
2774 |
|
2775 |
+
# dataset
|
2776 |
+
with gr.TabItem("DialogSum"):
|
2777 |
with gr.Row():
|
2778 |
gr.Markdown("""
|
2779 |
+
**DialogSum Leaderboard** 🔮
|
2780 |
|
2781 |
+
- **Metric:** ROUGE.
|
2782 |
- **Languages:** English
|
2783 |
""")
|
2784 |
|
|
|
2786 |
with gr.TabItem("Overall"):
|
2787 |
with gr.Row():
|
2788 |
gr.components.Dataframe(
|
2789 |
+
DIALOGSUM_ZERO_SHOT,
|
2790 |
+
datatype=["number", "markdown"] + ["number"] * len(DIALOGSUM_ZERO_SHOT.columns),
|
2791 |
type="pandas",
|
2792 |
)
|
2793 |
|
2794 |
+
|
2795 |
+
|
2796 |
with gr.TabItem("five_shot"):
|
2797 |
with gr.TabItem("Overall"):
|
2798 |
with gr.Row():
|
2799 |
gr.components.Dataframe(
|
2800 |
+
DIALOGSUM_FIVE_SHOT,
|
2801 |
+
datatype=["number", "markdown"] + ["number"] * len(DIALOGSUM_FIVE_SHOT.columns),
|
2802 |
type="pandas",
|
2803 |
)
|
2804 |
|
2805 |
|
2806 |
+
# dataset
|
2807 |
+
with gr.TabItem("SST2"):
|
|
|
2808 |
with gr.Row():
|
2809 |
gr.Markdown("""
|
2810 |
+
**SST2 Leaderboard** 🔮
|
2811 |
|
2812 |
+
- **Metric:** Accuracy.
|
2813 |
- **Languages:** English
|
2814 |
""")
|
2815 |
|
|
|
2817 |
with gr.TabItem("Overall"):
|
2818 |
with gr.Row():
|
2819 |
gr.components.Dataframe(
|
2820 |
+
SST2_ZERO_SHOT,
|
2821 |
+
datatype=["number", "markdown"] + ["number"] * len(SST2_ZERO_SHOT.columns),
|
2822 |
type="pandas",
|
2823 |
)
|
2824 |
|
2825 |
+
|
2826 |
+
|
2827 |
with gr.TabItem("five_shot"):
|
2828 |
with gr.TabItem("Overall"):
|
2829 |
with gr.Row():
|
2830 |
gr.components.Dataframe(
|
2831 |
+
SST2_FIVE_SHOT,
|
2832 |
+
datatype=["number", "markdown"] + ["number"] * len(SST2_FIVE_SHOT.columns),
|
2833 |
type="pandas",
|
2834 |
)
|
2835 |
|
2836 |
|
2837 |
+
# dataset
|
2838 |
+
with gr.TabItem("COLA"):
|
2839 |
with gr.Row():
|
2840 |
gr.Markdown("""
|
2841 |
+
**COLA Leaderboard** 🔮
|
2842 |
|
2843 |
- **Metric:** Accuracy.
|
2844 |
- **Languages:** English
|
|
|
2848 |
with gr.TabItem("Overall"):
|
2849 |
with gr.Row():
|
2850 |
gr.components.Dataframe(
|
2851 |
+
COLA_ZERO_SHOT,
|
2852 |
+
datatype=["number", "markdown"] + ["number"] * len(COLA_ZERO_SHOT.columns),
|
2853 |
type="pandas",
|
2854 |
)
|
2855 |
|
2856 |
+
|
2857 |
+
|
2858 |
with gr.TabItem("five_shot"):
|
2859 |
with gr.TabItem("Overall"):
|
2860 |
with gr.Row():
|
2861 |
gr.components.Dataframe(
|
2862 |
+
COLA_FIVE_SHOT,
|
2863 |
+
datatype=["number", "markdown"] + ["number"] * len(COLA_FIVE_SHOT.columns),
|
2864 |
type="pandas",
|
2865 |
)
|
2866 |
|
2867 |
|
2868 |
+
# dataset
|
2869 |
+
with gr.TabItem("QQP"):
|
2870 |
with gr.Row():
|
2871 |
gr.Markdown("""
|
2872 |
+
**QQP Leaderboard** 🔮
|
2873 |
|
2874 |
- **Metric:** Accuracy.
|
2875 |
- **Languages:** English
|
|
|
2879 |
with gr.TabItem("Overall"):
|
2880 |
with gr.Row():
|
2881 |
gr.components.Dataframe(
|
2882 |
+
QQP_ZERO_SHOT,
|
2883 |
+
datatype=["number", "markdown"] + ["number"] * len(QQP_ZERO_SHOT.columns),
|
2884 |
type="pandas",
|
2885 |
)
|
2886 |
|
|
|
2890 |
with gr.TabItem("Overall"):
|
2891 |
with gr.Row():
|
2892 |
gr.components.Dataframe(
|
2893 |
+
QQP_FIVE_SHOT,
|
2894 |
+
datatype=["number", "markdown"] + ["number"] * len(QQP_FIVE_SHOT.columns),
|
2895 |
type="pandas",
|
2896 |
)
|
2897 |
|
2898 |
+
|
2899 |
+
# dataset
|
2900 |
+
with gr.TabItem("MNLI"):
|
2901 |
with gr.Row():
|
2902 |
gr.Markdown("""
|
2903 |
+
**MNLI Leaderboard** 🔮
|
2904 |
|
2905 |
- **Metric:** Accuracy.
|
2906 |
+
- **Languages:** English
|
2907 |
""")
|
2908 |
|
2909 |
with gr.TabItem("zero_shot"):
|
2910 |
with gr.TabItem("Overall"):
|
2911 |
with gr.Row():
|
2912 |
gr.components.Dataframe(
|
2913 |
+
MNLI_ZERO_SHOT,
|
2914 |
+
datatype=["number", "markdown"] + ["number"] * len(MNLI_ZERO_SHOT.columns),
|
2915 |
type="pandas",
|
2916 |
)
|
2917 |
|
|
|
2921 |
with gr.TabItem("Overall"):
|
2922 |
with gr.Row():
|
2923 |
gr.components.Dataframe(
|
2924 |
+
MNLI_FIVE_SHOT,
|
2925 |
+
datatype=["number", "markdown"] + ["number"] * len(MNLI_FIVE_SHOT.columns),
|
2926 |
type="pandas",
|
2927 |
)
|
2928 |
|
2929 |
|
2930 |
+
# dataset
|
2931 |
+
with gr.TabItem("QNLI"):
|
2932 |
with gr.Row():
|
2933 |
gr.Markdown("""
|
2934 |
+
**QNLI Leaderboard** 🔮
|
2935 |
|
2936 |
- **Metric:** Accuracy.
|
2937 |
+
- **Languages:** English
|
2938 |
""")
|
2939 |
|
2940 |
with gr.TabItem("zero_shot"):
|
2941 |
with gr.TabItem("Overall"):
|
2942 |
with gr.Row():
|
2943 |
gr.components.Dataframe(
|
2944 |
+
QNLI_ZERO_SHOT,
|
2945 |
+
datatype=["number", "markdown"] + ["number"] * len(QNLI_ZERO_SHOT.columns),
|
2946 |
type="pandas",
|
2947 |
)
|
2948 |
|
|
|
2952 |
with gr.TabItem("Overall"):
|
2953 |
with gr.Row():
|
2954 |
gr.components.Dataframe(
|
2955 |
+
QNLI_FIVE_SHOT,
|
2956 |
+
datatype=["number", "markdown"] + ["number"] * len(QNLI_FIVE_SHOT.columns),
|
2957 |
type="pandas",
|
2958 |
)
|
2959 |
|
2960 |
+
|
2961 |
+
# dataset
|
2962 |
+
with gr.TabItem("WNLI"):
|
2963 |
with gr.Row():
|
2964 |
gr.Markdown("""
|
2965 |
+
**WNLI Leaderboard** 🔮
|
2966 |
|
2967 |
- **Metric:** Accuracy.
|
2968 |
+
- **Languages:** English
|
2969 |
""")
|
2970 |
|
2971 |
with gr.TabItem("zero_shot"):
|
2972 |
with gr.TabItem("Overall"):
|
2973 |
with gr.Row():
|
2974 |
gr.components.Dataframe(
|
2975 |
+
WNLI_ZERO_SHOT,
|
2976 |
+
datatype=["number", "markdown"] + ["number"] * len(WNLI_ZERO_SHOT.columns),
|
2977 |
type="pandas",
|
2978 |
)
|
2979 |
|
|
|
2983 |
with gr.TabItem("Overall"):
|
2984 |
with gr.Row():
|
2985 |
gr.components.Dataframe(
|
2986 |
+
WNLI_FIVE_SHOT,
|
2987 |
+
datatype=["number", "markdown"] + ["number"] * len(WNLI_FIVE_SHOT.columns),
|
2988 |
type="pandas",
|
2989 |
)
|
2990 |
|
2991 |
+
|
2992 |
+
# dataset
|
2993 |
+
with gr.TabItem("RTE"):
|
2994 |
with gr.Row():
|
2995 |
gr.Markdown("""
|
2996 |
+
**RTE Leaderboard** 🔮
|
2997 |
|
2998 |
- **Metric:** Accuracy.
|
2999 |
+
- **Languages:** English
|
3000 |
""")
|
3001 |
|
3002 |
with gr.TabItem("zero_shot"):
|
3003 |
with gr.TabItem("Overall"):
|
3004 |
with gr.Row():
|
3005 |
gr.components.Dataframe(
|
3006 |
+
RTE_ZERO_SHOT,
|
3007 |
+
datatype=["number", "markdown"] + ["number"] * len(RTE_ZERO_SHOT.columns),
|
3008 |
type="pandas",
|
3009 |
)
|
3010 |
|
|
|
3014 |
with gr.TabItem("Overall"):
|
3015 |
with gr.Row():
|
3016 |
gr.components.Dataframe(
|
3017 |
+
RTE_FIVE_SHOT,
|
3018 |
+
datatype=["number", "markdown"] + ["number"] * len(RTE_FIVE_SHOT.columns),
|
3019 |
type="pandas",
|
3020 |
)
|
3021 |
|
3022 |
+
|
3023 |
+
# dataset
|
3024 |
+
with gr.TabItem("MRPC"):
|
3025 |
with gr.Row():
|
3026 |
gr.Markdown("""
|
3027 |
+
**MRPC Leaderboard** 🔮
|
3028 |
|
3029 |
- **Metric:** Accuracy.
|
3030 |
+
- **Languages:** English
|
3031 |
""")
|
3032 |
|
3033 |
with gr.TabItem("zero_shot"):
|
3034 |
with gr.TabItem("Overall"):
|
3035 |
with gr.Row():
|
3036 |
gr.components.Dataframe(
|
3037 |
+
MRPC_ZERO_SHOT,
|
3038 |
+
datatype=["number", "markdown"] + ["number"] * len(MRPC_ZERO_SHOT.columns),
|
3039 |
type="pandas",
|
3040 |
)
|
3041 |
|
|
|
3045 |
with gr.TabItem("Overall"):
|
3046 |
with gr.Row():
|
3047 |
gr.components.Dataframe(
|
3048 |
+
MRPC_FIVE_SHOT,
|
3049 |
+
datatype=["number", "markdown"] + ["number"] * len(MRPC_FIVE_SHOT.columns),
|
3050 |
type="pandas",
|
3051 |
)
|
3052 |
|
|
|
3060 |
|
3061 |
|
3062 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3063 |
|
3064 |
gr.Markdown(r"""
|
3065 |
|