File size: 1,374 Bytes
e3463bc 05f708c e3463bc c82653a 486c2a9 e3463bc 05f708c c82653a 05f708c e3463bc 05f708c c82653a 05f708c e3463bc 05f708c e3463bc 05f708c e3463bc c82653a e3463bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from transformers import pipeline, BartTokenizer, BartForConditionalGeneration
# Load the BART model and tokenizer for text generation
model_name = "facebook/bart-small"
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
def detect_questions(email_text):
# Simple heuristic to detect questions
questions = [sentence.strip() + "?" for sentence in email_text.split(".") if "?" in sentence]
return questions
def generate_answers(question):
# Generate an answer for the given question using the BART model
inputs = tokenizer(question, return_tensors="pt", max_length=1024, truncation=True)
summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=50, early_stopping=True)
answer = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return answer
def process_email(email_text):
questions = detect_questions(email_text)
responses = {}
for question in questions:
response = generate_answers(question)
responses[question] = response
return responses
iface = gr.Interface(
fn=process_email,
inputs="textbox",
outputs="text",
title="Email Question Responder",
description="Input an email, and the AI will detect questions and provide possible answers.",
)
iface.launch()
|