Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_experimental.text_splitter import SemanticChunker | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
# --- 1) إعداد الصفحة --- | |
st.title("💬 المحادثة التفاعلية - إدارة البيانات وحماية البيانات الشخصية") | |
local_file = "Policies001.pdf" | |
index_folder = "faiss_index" | |
# إضافة CSS مخصص لدعم النصوص من اليمين لليسار | |
st.markdown( | |
""" | |
<style> | |
.rtl { | |
direction: rtl; | |
text-align: right; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# --- 2) تحميل أو بناء قاعدة بيانات FAISS --- | |
embeddings = HuggingFaceEmbeddings( | |
model_name="CAMeL-Lab/bert-base-arabic-camelbert-mix", | |
model_kwargs={"trust_remote_code": True} | |
) | |
if os.path.exists(index_folder): | |
# تحميل قاعدة البيانات إذا كانت موجودة | |
vectorstore = FAISS.load_local(index_folder, embeddings, allow_dangerous_deserialization=True) | |
else: | |
# تحميل PDF وتقسيم النصوص | |
loader = PyPDFLoader(local_file) | |
documents = loader.load() | |
text_splitter = SemanticChunker( | |
embeddings=embeddings, | |
breakpoint_threshold_type='percentile', | |
breakpoint_threshold_amount=90 | |
) | |
chunked_docs = text_splitter.split_documents(documents) | |
# إنشاء قاعدة بيانات FAISS | |
vectorstore = FAISS.from_documents(chunked_docs, embeddings) | |
vectorstore.save_local(index_folder) | |
# --- 3) إعداد المسترجع --- | |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}) | |
# --- 4) إعداد نموذج النص --- | |
model_name = "CohereForAI/c4ai-command-r7b-arabic-02-2025" # اسم النموذج | |
# التأكد من وجود توكن Hugging Face | |
hf_token = os.getenv("HF_TOKEN") | |
if hf_token is None: | |
st.error("Hugging Face token not found. Please set the 'HF_TOKEN' environment variable.") | |
st.stop() | |
# تحميل النموذج والمحول | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) | |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token) | |
# إعداد pipeline لتوليد النصوص | |
qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) | |
# --- 5) إعداد الذاكرة --- | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
return_messages=True | |
) | |
# --- 6) إدارة رسائل المستخدم --- | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [ | |
{"role": "assistant", "content": "👋 مرحبًا! اسألني أي شيء عن إدارة البيانات وحماية البيانات الشخصية!"} | |
] | |
# عرض الرسائل الحالية | |
for msg in st.session_state["messages"]: | |
with st.chat_message(msg["role"]): | |
st.markdown(f'<div class="rtl">{msg["content"]}</div>', unsafe_allow_html=True) | |
# --- 7) إدخال المستخدم --- | |
user_input = st.chat_input("اكتب سؤالك هنا") | |
# --- 8) معالجة رسالة المستخدم --- | |
if user_input: | |
# عرض رسالة المستخدم | |
st.session_state["messages"].append({"role": "user", "content": user_input}) | |
with st.chat_message("user"): | |
st.markdown(f'<div class="rtl">{user_input}</div>', unsafe_allow_html=True) | |
# استرجاع المستندات ذات الصلة | |
retrieved_docs = retriever.get_relevant_documents(user_input) | |
context = "\n".join([doc.page_content for doc in retrieved_docs]) | |
full_input = f"السياق:\n{context}\n\nالسؤال:\n{user_input}" | |
# توليد الإجابة باستخدام النموذج | |
response = qa_pipeline(full_input, max_length=500, num_return_sequences=1)[0]["generated_text"] | |
# عرض الإجابة | |
st.session_state["messages"].append({"role": "assistant", "content": response}) | |
with st.chat_message("assistant"): | |
st.markdown(f'<div class="rtl">{response}</div>', unsafe_allow_html=True) |