FireFlow / flux /sampling.py
shuanholmes
[FireFlow] Init Commit
bf00c4c
import math
from typing import Callable
import torch
from einops import rearrange, repeat
from torch import Tensor
from .model import Flux
from .modules.conditioner import HFEmbedder
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
bs, c, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
txt = t5(prompt)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return {
"img": img,
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"vec": vec.to(img.device),
}
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# estimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
model: Flux,
# model input
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
vec: Tensor,
# sampling parameters
timesteps: list[float],
inverse,
info,
guidance: float = 4.0
):
# this is ignored for schnell
inject_list = [True] * info['inject_step'] + [False] * (len(timesteps[:-1]) - info['inject_step'])
if inverse:
timesteps = timesteps[::-1]
inject_list = inject_list[::-1]
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
step_list = []
next_step_velocity = None
for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
info['t'] = t_prev if inverse else t_curr
info['inverse'] = inverse
info['second_order'] = False
info['inject'] = inject_list[i]
if next_step_velocity is None:
pred, info = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
info=info
)
else:
pred = next_step_velocity
img_mid = img + (t_prev - t_curr) / 2 * pred
t_vec_mid = torch.full((img.shape[0],), t_curr + (t_prev - t_curr) / 2, dtype=img.dtype, device=img.device)
info['second_order'] = True
pred_mid, info = model(
img=img_mid,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec_mid,
guidance=guidance_vec,
info=info
)
next_step_velocity = pred_mid
img = img + (t_prev - t_curr) * pred_mid
return img, info
def unpack(x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)