Mahiruoshi's picture
Update app.py
9da3b76
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
from text import text_to_sequence
import numpy as np
from scipy.io import wavfile
import torch
import json
import commons
import utils
import sys
import pathlib
import onnxruntime as ort
import gradio as gr
import argparse
import time
import os
from scipy.io.wavfile import write
def is_japanese(string):
for ch in string:
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
return True
return False
def is_english(string):
import re
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
if pattern.fullmatch(string):
return True
else:
return False
def to_numpy(tensor: torch.Tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad \
else tensor.detach().numpy()
def get_symbols_from_json(path):
assert os.path.isfile(path)
with open(path, 'r') as f:
data = json.load(f)
return data['symbols']
def sle(language,text):
text = text.replace('\n','。').replace(' ',',')
if language == "中文":
tts_input1 = "[ZH]" + text + "[ZH]"
return tts_input1
elif language == "自动":
tts_input1 = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
return tts_input1
elif language == "日文":
tts_input1 = "[JA]" + text + "[JA]"
return tts_input1
elif language == "英文":
tts_input1 = "[EN]" + text + "[EN]"
return tts_input1
elif language == "手动":
return text
def get_text(text,hps_ms):
text_norm = text_to_sequence(text,hps_ms.symbols,hps_ms.data.text_cleaners)
if hps_ms.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def create_tts_fn(ort_sess, speaker_id):
def tts_fn(text , language, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
text =sle(language,text)
seq = text_to_sequence(text,hps.symbols, cleaner_names=hps.data.text_cleaners)
if hps.data.add_blank:
seq = commons.intersperse(seq, 0)
with torch.no_grad():
x = np.array([seq], dtype=np.int64)
x_len = np.array([x.shape[1]], dtype=np.int64)
sid = np.array([speaker_id], dtype=np.int64)
scales = np.array([n_scale, n_scale_w, l_scale], dtype=np.float32)
scales.resize(1, 3)
ort_inputs = {
'input': x,
'input_lengths': x_len,
'scales': scales,
'sid': sid
}
t1 = time.time()
audio = np.squeeze(ort_sess.run(None, ort_inputs))
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
audio = np.clip(audio, -32767.0, 32767.0)
t2 = time.time()
spending_time = "推理时间:"+str(t2-t1)+"s"
print(spending_time)
return (hps.data.sampling_rate, audio)
return tts_fn
if __name__ == '__main__':
symbols = get_symbols_from_json('checkpoints/ShojoKageki/config.json')
hps = utils.get_hparams_from_file('checkpoints/ShojoKageki/config.json')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
models = []
schools = ["ShojoKageki-Nijigasaki","ShojoKageki","Nijigasaki"]
lan = ["中文","日文","自动","手动"]
with open("checkpoints/info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
for i in models_info:
school = models_info[i]
speakers = school["speakers"]
checkpoint = school["checkpoint"]
phone_dict = {
symbol: i for i, symbol in enumerate(symbols)
}
ort_sess = ort.InferenceSession(checkpoint)
content = []
for j in speakers:
sid = int(speakers[j]['sid'])
title = school
example = speakers[j]['speech']
name = speakers[j]["name"]
content.append((sid, name, title, example, create_tts_fn(ort_sess, sid)))
models.append(content)
with gr.Blocks() as app:
gr.Markdown(
"# <center> vits-models\n"
)
with gr.Tabs():
for i in schools:
with gr.TabItem(i):
for (sid, name, title, example, tts_fn) in models[schools.index(i)]:
with gr.TabItem(name):
'''
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<a><strong>{name}</strong></a>'
f'<img style="width:auto;height:300px;" src="file/{sid}.png">'
'</div>'
)
'''
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown(
'<div align="center">'
f'<a><strong>{name}</strong></a>'
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
'</div>'
)
input2 = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)
with gr.Column():
input1 = gr.TextArea(label="Text", value=example)
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.667)
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.8)
input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
btnVC = gr.Button("Submit")
output1 = gr.Audio(label="采样率22050")
btnVC.click(tts_fn, inputs=[input1, input2, input4, input5, input6], outputs=[output1])
app.launch()