File size: 6,813 Bytes
4de73fc
 
 
 
 
 
 
996feab
4de73fc
996feab
 
4de73fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161b131
4de73fc
22980ff
 
 
996feab
4de73fc
 
 
161b131
4de73fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da3b76
 
4de73fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161b131
 
4de73fc
 
 
 
 
d94bbcb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
from text import text_to_sequence
import numpy as np
from scipy.io import wavfile
import torch
import json
import commons
import utils
import sys
import pathlib
import onnxruntime as ort
import gradio as gr
import argparse
import time
import os
from scipy.io.wavfile import write

def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def is_english(string):
        import re
        pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
        if pattern.fullmatch(string):
            return True
        else:
            return False

def to_numpy(tensor: torch.Tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad \
        else tensor.detach().numpy()

def get_symbols_from_json(path):
    assert os.path.isfile(path)
    with open(path, 'r') as f:
        data = json.load(f)
    return data['symbols']

def sle(language,text):
        text = text.replace('\n','。').replace(' ',',')
        if language == "中文":
            tts_input1 = "[ZH]" + text + "[ZH]"
            return tts_input1
        elif language == "自动":
            tts_input1 = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
            return tts_input1
        elif language == "日文":
            tts_input1 = "[JA]" + text + "[JA]"
            return tts_input1
        elif language == "英文":
            tts_input1 = "[EN]" + text + "[EN]"
            return tts_input1
        elif language == "手动":
            return text

def get_text(text,hps_ms):
    text_norm = text_to_sequence(text,hps_ms.symbols,hps_ms.data.text_cleaners)
    if hps_ms.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = torch.LongTensor(text_norm)
    return text_norm

def create_tts_fn(ort_sess, speaker_id):
    def tts_fn(text , language, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
        text =sle(language,text)
        seq = text_to_sequence(text,hps.symbols, cleaner_names=hps.data.text_cleaners)
        if hps.data.add_blank:
            seq = commons.intersperse(seq, 0)
        with torch.no_grad():
            x = np.array([seq], dtype=np.int64)
            x_len = np.array([x.shape[1]], dtype=np.int64)
            sid = np.array([speaker_id], dtype=np.int64)
            scales = np.array([n_scale, n_scale_w, l_scale], dtype=np.float32)
            scales.resize(1, 3)
            ort_inputs = {
                        'input': x,
                        'input_lengths': x_len,
                        'scales': scales,
                        'sid': sid
                    }
            t1 = time.time()
            audio = np.squeeze(ort_sess.run(None, ort_inputs))
            audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
            audio = np.clip(audio, -32767.0, 32767.0)
            t2 = time.time()
            spending_time = "推理时间:"+str(t2-t1)+"s" 
            print(spending_time)
        return (hps.data.sampling_rate, audio) 
    return tts_fn


if __name__ == '__main__':
    symbols = get_symbols_from_json('checkpoints/ShojoKageki/config.json')
    hps = utils.get_hparams_from_file('checkpoints/ShojoKageki/config.json')
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    models = []
    schools = ["ShojoKageki-Nijigasaki","ShojoKageki","Nijigasaki"]
    lan = ["中文","日文","自动","手动"]
    with open("checkpoints/info.json", "r", encoding="utf-8") as f:
        models_info = json.load(f)
    for i in models_info:
        school = models_info[i]
        speakers = school["speakers"]
        checkpoint = school["checkpoint"]
        phone_dict = {
            symbol: i for i, symbol in enumerate(symbols)
        }
        ort_sess = ort.InferenceSession(checkpoint)
        content = []
        for j in speakers:
            sid = int(speakers[j]['sid'])
            title = school
            example = speakers[j]['speech']
            name = speakers[j]["name"]
            content.append((sid, name, title, example, create_tts_fn(ort_sess, sid)))
        models.append(content)
    
    with gr.Blocks() as app:
        gr.Markdown(
            "# <center> vits-models\n"
        )
        with gr.Tabs():
            for i in schools:
                with gr.TabItem(i):
                    for (sid, name,  title, example, tts_fn) in models[schools.index(i)]:
                        with gr.TabItem(name):
                            '''
                            with gr.Row():
                                gr.Markdown(
                                    '<div align="center">'
                                    f'<a><strong>{name}</strong></a>'
                                    f'<img style="width:auto;height:300px;" src="file/{sid}.png">' 
                                    '</div>'
                                )
                            '''
                            with gr.Row():
                                with gr.Column():
                                    with gr.Row():
                                        with gr.Column():
                                            gr.Markdown(
                                                '<div align="center">'
                                                f'<a><strong>{name}</strong></a>'
                                                f'<img style="width:auto;height:400px;" src="file/image/{name}.png">' 
                                                '</div>'
                                            )
                                            input2 = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)
                                        with gr.Column():
                                            input1 = gr.TextArea(label="Text", value=example)
                                            input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.667)
                                            input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.8)
                                            input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
                                            btnVC = gr.Button("Submit")
                                            output1 = gr.Audio(label="采样率22050")
                                            
                            btnVC.click(tts_fn, inputs=[input1, input2, input4, input5, input6], outputs=[output1])
    app.launch()