BOREA_DEMO / app.py
MakiAi's picture
Update app.py
e995600 verified
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
# モデルの定義
MODELS = {
"Borea-Phi-3.5-mini-Jp": "AXCXEPT/Borea-Phi-3.5-mini-Instruct-Jp",
"EZO-Common-9B": "HODACHI/EZO-Common-9B-gemma-2-it",
"Phi-3.5-mini": "microsoft/Phi-3.5-mini-instruct",
}
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# タイトルとプレースホルダーを日本語に変更
TITLE = "<h1><center>Borea/EZO デモアプリ</center></h1>"
PLACEHOLDER = """
<center>
<p>こんにちは、私はAIアシスタントです。何でも質問してください。</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
model = None
tokenizer = None
def load_model(model_name):
global model, tokenizer
model_path = MODELS[model_name]
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.8,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
repetition_penalty: float = 1.2,
model_name: str = "Phi-3.5-mini"
):
global model, tokenizer
if model is None or tokenizer is None or model.name_or_path != MODELS[model_name]:
load_model(model_name)
print(f'message: {message}')
print(f'history: {history}')
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme='ParityError/Interstellar') as demo:
gr.HTML(TITLE)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs=[
gr.Textbox(
value="あなたは親切なアシスタントです。",
label="システムプロンプト",
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="温度 (Temperature)",
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="最大新規トークン数",
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
),
gr.Slider(
minimum=1.0,
maximum=2.0,
step=0.1,
value=1.2,
label="繰り返しペナルティ",
),
gr.Dropdown(
choices=list(MODELS.keys()),
value="Borea-Phi-3.5-mini-Jp",
label="モデル選択",
),
],
examples=[
["語彙の勉強を手伝ってください。空欄を埋めるための文章を書いてください。私は正しい選択肢を選びます。"],
["子供のアート作品でできる5つの創造的なことを教えてください。捨てたくはないのですが、散らかってしまいます。"],
["ローマ帝国についてのランダムな面白い事実を教えてください。"],
["ウェブサイトの固定ヘッダーのCSSとJavaScriptのコードスニペットを見せてください。"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()