This PR adds the "Guidance Scale" parameter

#2
Files changed (1) hide show
  1. app.py +19 -10
app.py CHANGED
@@ -19,7 +19,7 @@ pipe = FluxInpaintPipeline.from_pretrained(
19
  "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
20
 
21
  @spaces.GPU()
22
- def process(input_image_editor, uploaded_mask, input_text, strength, seed, randomize_seed, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
23
  if not input_text:
24
  raise gr.Error("Please enter a text prompt.")
25
 
@@ -49,7 +49,8 @@ def process(input_image_editor, uploaded_mask, input_text, strength, seed, rando
49
  height=height,
50
  strength=strength,
51
  num_inference_steps=num_inference_steps,
52
- generator=generator
 
53
  ).images[0]
54
 
55
  return result, mask_image, seed
@@ -80,12 +81,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
80
  step=0.01,
81
  label="Strength"
82
  )
83
- seed_number = gr.Number(
84
- label="Seed",
85
- value=42,
86
- precision=0
87
- )
88
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
89
  num_inference_steps = gr.Slider(
90
  minimum=1,
91
  maximum=100,
@@ -93,10 +88,23 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
93
  step=1,
94
  label="Number of inference steps"
95
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  with gr.Accordion("Upload a mask", open=False):
97
  uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil")
98
  submit_button_component = gr.Button(
99
- value='Generate', variant='primary')
100
  with gr.Column(scale=1):
101
  output_image_component = gr.Image(
102
  type='pil', image_mode='RGB', label='Generated image')
@@ -114,7 +122,8 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
114
  strength_slider,
115
  seed_number,
116
  randomize_seed,
117
- num_inference_steps
 
118
  ],
119
  outputs=[
120
  output_image_component,
 
19
  "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
20
 
21
  @spaces.GPU()
22
+ def process(input_image_editor, uploaded_mask, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale=3.5, progress=gr.Progress(track_tqdm=True)):
23
  if not input_text:
24
  raise gr.Error("Please enter a text prompt.")
25
 
 
49
  height=height,
50
  strength=strength,
51
  num_inference_steps=num_inference_steps,
52
+ generator=generator,
53
+ guidance_scale=guidance_scale
54
  ).images[0]
55
 
56
  return result, mask_image, seed
 
81
  step=0.01,
82
  label="Strength"
83
  )
 
 
 
 
 
 
84
  num_inference_steps = gr.Slider(
85
  minimum=1,
86
  maximum=100,
 
88
  step=1,
89
  label="Number of inference steps"
90
  )
91
+ guidance_scale = gr.Slider(
92
+ label="Guidance Scale",
93
+ minimum=1,
94
+ maximum=15,
95
+ step=0.1,
96
+ value=3.5,
97
+ )
98
+ seed_number = gr.Number(
99
+ label="Seed",
100
+ value=42,
101
+ precision=0
102
+ )
103
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
104
  with gr.Accordion("Upload a mask", open=False):
105
  uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil")
106
  submit_button_component = gr.Button(
107
+ value='Inpaint', variant='primary')
108
  with gr.Column(scale=1):
109
  output_image_component = gr.Image(
110
  type='pil', image_mode='RGB', label='Generated image')
 
122
  strength_slider,
123
  seed_number,
124
  randomize_seed,
125
+ num_inference_steps,
126
+ guidance_scale
127
  ],
128
  outputs=[
129
  output_image_component,