File size: 7,121 Bytes
074cf17
559513f
 
 
 
 
 
391392f
 
3f9241e
 
7367aa3
074cf17
559513f
 
 
 
2317b49
559513f
 
3f9241e
074cf17
559513f
a6a0895
 
 
 
 
 
 
 
 
 
 
 
 
559513f
39904a2
559513f
 
 
 
 
 
 
39904a2
074cf17
 
 
559513f
a6a0895
 
074cf17
 
 
 
39904a2
 
559513f
 
 
 
 
39904a2
559513f
 
 
39904a2
559513f
 
3f9241e
 
 
074cf17
 
 
3f9241e
 
 
 
 
 
 
 
074cf17
 
 
 
 
 
3f9241e
391392f
559513f
3f9241e
559513f
074cf17
 
 
 
 
 
 
 
 
 
 
 
 
39904a2
074cf17
39904a2
391392f
074cf17
 
 
 
3f9241e
391392f
 
39904a2
391392f
 
3f9241e
391392f
3f9241e
3b03cca
60b3b65
 
 
 
074cf17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52b9e07
074cf17
60b3b65
52b9e07
559513f
 
60b3b65
074cf17
2d11b96
 
4c87df2
 
 
 
60b3b65
4c87df2
 
3f9241e
4c87df2
 
3f9241e
 
4c87df2
074cf17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
from PyPDF2 import PdfReader
import pandas as pd
from dotenv import load_dotenv
import groq
import json
from datetime import datetime
from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import random
from joblib import Parallel, delayed

class TweetDatasetProcessor:
    def __init__(self):
        load_dotenv()
        self.groq_client = groq.Groq(api_key=os.getenv('Groq_api'))
        self.tweets = []
        self.personality_profile = {}
        self.vectorizer = TfidfVectorizer(stop_words='english')
        self.used_tweets = set()  # Track used tweets to avoid repetition

    @staticmethod
    def _process_line(line):
        """Process a single line."""
        line = line.strip()
        if not line or line.startswith('http'):  # Skip empty lines and URLs
            return None
        return {
            'content': line,
            'timestamp': datetime.now(),
            'mentions': [word for word in line.split() if word.startswith('@')],
            'hashtags': [word for word in line.split() if word.startswith('#')]
        }

    def extract_text_from_pdf(self, pdf_path):
        """Extract text content from PDF file."""
        reader = PdfReader(pdf_path)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
        return text

    def process_pdf_content(self, text):
        """Process PDF content and clean extracted tweets."""
        if not text.strip():
            raise ValueError("The uploaded PDF appears to be empty.")
        
        lines = text.split('\n')
        # Pass the static method explicitly
        clean_tweets = Parallel(n_jobs=-1)(delayed(TweetDatasetProcessor._process_line)(line) for line in lines)
        self.tweets = [tweet for tweet in clean_tweets if tweet]

        if not self.tweets:
            raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")

        # Save the processed tweets to a CSV
        df = pd.DataFrame(self.tweets)
        df.to_csv('processed_tweets.csv', index=False)
        return df

    def _extract_mentions(self, text):
        """Extract mentioned users from tweet."""
        return [word for word in text.split() if word.startswith('@')]

    def _extract_hashtags(self, text):
        """Extract hashtags from tweet."""
        return [word for word in text.split() if word.startswith('#')]

    def categorize_tweets(self):
        """Cluster tweets into categories using KMeans."""
        all_tweets = [tweet['content'] for tweet in self.tweets]
        if not all_tweets:
            raise ValueError("No tweets available for clustering.")
        
        tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
        kmeans = KMeans(n_clusters=5, random_state=1)
        kmeans.fit(tfidf_matrix)

        for i, tweet in enumerate(self.tweets):
            tweet['category'] = f"Category {kmeans.labels_[i]}"
        return pd.DataFrame(self.tweets)

    def analyze_personality(self, max_tweets=50):
        """Comprehensive personality analysis using a limited subset of tweets."""
        if not self.tweets:
            raise ValueError("No tweets available for personality analysis.")

        all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
        analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
        Core beliefs, emotional tendencies, cognitive patterns, etc.
        Tweets for analysis:
        {json.dumps(all_tweets, indent=2)}
        """
        try:
            response = self.groq_client.chat.completions.create(
                messages=[
                    {"role": "system", "content": "You are an expert psychologist."},
                    {"role": "user", "content": analysis_prompt},
                ],
                model="llama-3.1-70b-versatile",
                temperature=0.1,
            )
            self.personality_profile = response.choices[0].message.content
            return self.personality_profile
        except Exception as e:
            return f"Error during personality analysis: {str(e)}"

    def analyze_topics(self, n_topics=None):
        """Extract and identify different topics the author has tweeted about."""
        all_tweets = [tweet['content'] for tweet in self.tweets]
        if not all_tweets:
            return []

        n_topics = n_topics or min(5, len(all_tweets) // 10)
        tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
        nmf_model = NMF(n_components=n_topics, random_state=1)
        nmf_model.fit(tfidf_matrix)

        topics = []
        for topic_idx, topic in enumerate(nmf_model.components_):
            topic_words = [self.vectorizer.get_feature_names_out()[i] for i in topic.argsort()[:-n_topics - 1:-1]]
            topics.append(" ".join(topic_words))
        return list(set(topics))  # Remove duplicates

    def count_tokens(self, text):
        """Estimate the number of tokens in the given text."""
        return len(text.split())

    def generate_tweet(self, context="", sample_size=3):
        """Generate a new tweet by sampling random tweets and avoiding repetition."""
        if not self.tweets:
            return "Error: No tweets available for generation."

        # Randomly sample unique tweets
        available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
        if len(available_tweets) < sample_size:
            self.used_tweets.clear()  # Reset used tweets if all have been used
            available_tweets = self.tweets

        sampled_tweets = random.sample(available_tweets, sample_size)
        sampled_contents = [tweet['content'] for tweet in sampled_tweets]

        # Update the used tweets tracker
        self.used_tweets.update(sampled_contents)

        # Truncate personality profile to avoid token overflow
        personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile

        # Construct the prompt
        prompt = f"""Based on this personality profile:
        {personality_profile_excerpt}
        Current context or topic (if any):
        {context}
        Tweets for context:
        {', '.join(sampled_contents)}
        **Only generate the tweet. Do not include analysis, explanation, or any other content.**
        """
        try:
            response = self.groq_client.chat.completions.create(
                messages=[
                    {"role": "system", "content": "You are an expert in replicating writing and thinking patterns."},
                    {"role": "user", "content": prompt},
                ],
                model="llama-3.1-70b-versatile",
                temperature=1.0,
                max_tokens=150,
            )
            tweet = response.choices[0].message.content.strip()
            return tweet
        except Exception as e:
            return f"Error generating tweet: {str(e)}"