Spaces:
Sleeping
Sleeping
File size: 7,121 Bytes
074cf17 559513f 391392f 3f9241e 7367aa3 074cf17 559513f 2317b49 559513f 3f9241e 074cf17 559513f a6a0895 559513f 39904a2 559513f 39904a2 074cf17 559513f a6a0895 074cf17 39904a2 559513f 39904a2 559513f 39904a2 559513f 3f9241e 074cf17 3f9241e 074cf17 3f9241e 391392f 559513f 3f9241e 559513f 074cf17 39904a2 074cf17 39904a2 391392f 074cf17 3f9241e 391392f 39904a2 391392f 3f9241e 391392f 3f9241e 3b03cca 60b3b65 074cf17 52b9e07 074cf17 60b3b65 52b9e07 559513f 60b3b65 074cf17 2d11b96 4c87df2 60b3b65 4c87df2 3f9241e 4c87df2 3f9241e 4c87df2 074cf17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
from PyPDF2 import PdfReader
import pandas as pd
from dotenv import load_dotenv
import groq
import json
from datetime import datetime
from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import random
from joblib import Parallel, delayed
class TweetDatasetProcessor:
def __init__(self):
load_dotenv()
self.groq_client = groq.Groq(api_key=os.getenv('Groq_api'))
self.tweets = []
self.personality_profile = {}
self.vectorizer = TfidfVectorizer(stop_words='english')
self.used_tweets = set() # Track used tweets to avoid repetition
@staticmethod
def _process_line(line):
"""Process a single line."""
line = line.strip()
if not line or line.startswith('http'): # Skip empty lines and URLs
return None
return {
'content': line,
'timestamp': datetime.now(),
'mentions': [word for word in line.split() if word.startswith('@')],
'hashtags': [word for word in line.split() if word.startswith('#')]
}
def extract_text_from_pdf(self, pdf_path):
"""Extract text content from PDF file."""
reader = PdfReader(pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def process_pdf_content(self, text):
"""Process PDF content and clean extracted tweets."""
if not text.strip():
raise ValueError("The uploaded PDF appears to be empty.")
lines = text.split('\n')
# Pass the static method explicitly
clean_tweets = Parallel(n_jobs=-1)(delayed(TweetDatasetProcessor._process_line)(line) for line in lines)
self.tweets = [tweet for tweet in clean_tweets if tweet]
if not self.tweets:
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")
# Save the processed tweets to a CSV
df = pd.DataFrame(self.tweets)
df.to_csv('processed_tweets.csv', index=False)
return df
def _extract_mentions(self, text):
"""Extract mentioned users from tweet."""
return [word for word in text.split() if word.startswith('@')]
def _extract_hashtags(self, text):
"""Extract hashtags from tweet."""
return [word for word in text.split() if word.startswith('#')]
def categorize_tweets(self):
"""Cluster tweets into categories using KMeans."""
all_tweets = [tweet['content'] for tweet in self.tweets]
if not all_tweets:
raise ValueError("No tweets available for clustering.")
tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
kmeans = KMeans(n_clusters=5, random_state=1)
kmeans.fit(tfidf_matrix)
for i, tweet in enumerate(self.tweets):
tweet['category'] = f"Category {kmeans.labels_[i]}"
return pd.DataFrame(self.tweets)
def analyze_personality(self, max_tweets=50):
"""Comprehensive personality analysis using a limited subset of tweets."""
if not self.tweets:
raise ValueError("No tweets available for personality analysis.")
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
Core beliefs, emotional tendencies, cognitive patterns, etc.
Tweets for analysis:
{json.dumps(all_tweets, indent=2)}
"""
try:
response = self.groq_client.chat.completions.create(
messages=[
{"role": "system", "content": "You are an expert psychologist."},
{"role": "user", "content": analysis_prompt},
],
model="llama-3.1-70b-versatile",
temperature=0.1,
)
self.personality_profile = response.choices[0].message.content
return self.personality_profile
except Exception as e:
return f"Error during personality analysis: {str(e)}"
def analyze_topics(self, n_topics=None):
"""Extract and identify different topics the author has tweeted about."""
all_tweets = [tweet['content'] for tweet in self.tweets]
if not all_tweets:
return []
n_topics = n_topics or min(5, len(all_tweets) // 10)
tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
nmf_model = NMF(n_components=n_topics, random_state=1)
nmf_model.fit(tfidf_matrix)
topics = []
for topic_idx, topic in enumerate(nmf_model.components_):
topic_words = [self.vectorizer.get_feature_names_out()[i] for i in topic.argsort()[:-n_topics - 1:-1]]
topics.append(" ".join(topic_words))
return list(set(topics)) # Remove duplicates
def count_tokens(self, text):
"""Estimate the number of tokens in the given text."""
return len(text.split())
def generate_tweet(self, context="", sample_size=3):
"""Generate a new tweet by sampling random tweets and avoiding repetition."""
if not self.tweets:
return "Error: No tweets available for generation."
# Randomly sample unique tweets
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
if len(available_tweets) < sample_size:
self.used_tweets.clear() # Reset used tweets if all have been used
available_tweets = self.tweets
sampled_tweets = random.sample(available_tweets, sample_size)
sampled_contents = [tweet['content'] for tweet in sampled_tweets]
# Update the used tweets tracker
self.used_tweets.update(sampled_contents)
# Truncate personality profile to avoid token overflow
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile
# Construct the prompt
prompt = f"""Based on this personality profile:
{personality_profile_excerpt}
Current context or topic (if any):
{context}
Tweets for context:
{', '.join(sampled_contents)}
**Only generate the tweet. Do not include analysis, explanation, or any other content.**
"""
try:
response = self.groq_client.chat.completions.create(
messages=[
{"role": "system", "content": "You are an expert in replicating writing and thinking patterns."},
{"role": "user", "content": prompt},
],
model="llama-3.1-70b-versatile",
temperature=1.0,
max_tokens=150,
)
tweet = response.choices[0].message.content.strip()
return tweet
except Exception as e:
return f"Error generating tweet: {str(e)}"
|