Spaces:
Sleeping
Sleeping
import os | |
from PyPDF2 import PdfReader | |
import pandas as pd | |
from dotenv import load_dotenv | |
import groq | |
import json | |
from datetime import datetime | |
from sklearn.decomposition import NMF | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from sklearn.cluster import KMeans | |
import random | |
from joblib import Parallel, delayed | |
class TweetDatasetProcessor: | |
def __init__(self): | |
load_dotenv() | |
self.groq_client = groq.Groq(api_key=os.getenv('Groq_api')) | |
self.tweets = [] | |
self.personality_profile = {} | |
self.vectorizer = TfidfVectorizer(stop_words='english') | |
self.used_tweets = set() # Track used tweets to avoid repetition | |
def _process_line(line): | |
"""Process a single line.""" | |
line = line.strip() | |
if not line or line.startswith('http'): # Skip empty lines and URLs | |
return None | |
return { | |
'content': line, | |
'timestamp': datetime.now(), | |
'mentions': [word for word in line.split() if word.startswith('@')], | |
'hashtags': [word for word in line.split() if word.startswith('#')] | |
} | |
def extract_text_from_pdf(self, pdf_path): | |
"""Extract text content from PDF file.""" | |
reader = PdfReader(pdf_path) | |
text = "" | |
for page in reader.pages: | |
text += page.extract_text() | |
return text | |
def process_pdf_content(self, text): | |
"""Process PDF content and clean extracted tweets.""" | |
if not text.strip(): | |
raise ValueError("The uploaded PDF appears to be empty.") | |
lines = text.split('\n') | |
# Pass the static method explicitly | |
clean_tweets = Parallel(n_jobs=-1)(delayed(TweetDatasetProcessor._process_line)(line) for line in lines) | |
self.tweets = [tweet for tweet in clean_tweets if tweet] | |
if not self.tweets: | |
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.") | |
# Save the processed tweets to a CSV | |
df = pd.DataFrame(self.tweets) | |
df.to_csv('processed_tweets.csv', index=False) | |
return df | |
def _extract_mentions(self, text): | |
"""Extract mentioned users from tweet.""" | |
return [word for word in text.split() if word.startswith('@')] | |
def _extract_hashtags(self, text): | |
"""Extract hashtags from tweet.""" | |
return [word for word in text.split() if word.startswith('#')] | |
def categorize_tweets(self): | |
"""Cluster tweets into categories using KMeans.""" | |
all_tweets = [tweet['content'] for tweet in self.tweets] | |
if not all_tweets: | |
raise ValueError("No tweets available for clustering.") | |
tfidf_matrix = self.vectorizer.fit_transform(all_tweets) | |
kmeans = KMeans(n_clusters=5, random_state=1) | |
kmeans.fit(tfidf_matrix) | |
for i, tweet in enumerate(self.tweets): | |
tweet['category'] = f"Category {kmeans.labels_[i]}" | |
return pd.DataFrame(self.tweets) | |
def analyze_personality(self, max_tweets=50): | |
"""Comprehensive personality analysis using a limited subset of tweets.""" | |
if not self.tweets: | |
raise ValueError("No tweets available for personality analysis.") | |
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets] | |
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets: | |
Core beliefs, emotional tendencies, cognitive patterns, etc. | |
Tweets for analysis: | |
{json.dumps(all_tweets, indent=2)} | |
""" | |
try: | |
response = self.groq_client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": "You are an expert psychologist."}, | |
{"role": "user", "content": analysis_prompt}, | |
], | |
model="llama-3.1-70b-versatile", | |
temperature=0.1, | |
) | |
self.personality_profile = response.choices[0].message.content | |
return self.personality_profile | |
except Exception as e: | |
return f"Error during personality analysis: {str(e)}" | |
def analyze_topics(self, n_topics=None): | |
"""Extract and identify different topics the author has tweeted about.""" | |
all_tweets = [tweet['content'] for tweet in self.tweets] | |
if not all_tweets: | |
return [] | |
n_topics = n_topics or min(5, len(all_tweets) // 10) | |
tfidf_matrix = self.vectorizer.fit_transform(all_tweets) | |
nmf_model = NMF(n_components=n_topics, random_state=1) | |
nmf_model.fit(tfidf_matrix) | |
topics = [] | |
for topic_idx, topic in enumerate(nmf_model.components_): | |
topic_words = [self.vectorizer.get_feature_names_out()[i] for i in topic.argsort()[:-n_topics - 1:-1]] | |
topics.append(" ".join(topic_words)) | |
return list(set(topics)) # Remove duplicates | |
def count_tokens(self, text): | |
"""Estimate the number of tokens in the given text.""" | |
return len(text.split()) | |
def generate_tweet(self, context="", sample_size=3): | |
"""Generate a new tweet by sampling random tweets and avoiding repetition.""" | |
if not self.tweets: | |
return "Error: No tweets available for generation." | |
# Randomly sample unique tweets | |
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets] | |
if len(available_tweets) < sample_size: | |
self.used_tweets.clear() # Reset used tweets if all have been used | |
available_tweets = self.tweets | |
sampled_tweets = random.sample(available_tweets, sample_size) | |
sampled_contents = [tweet['content'] for tweet in sampled_tweets] | |
# Update the used tweets tracker | |
self.used_tweets.update(sampled_contents) | |
# Truncate personality profile to avoid token overflow | |
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile | |
# Construct the prompt | |
prompt = f"""Based on this personality profile: | |
{personality_profile_excerpt} | |
Current context or topic (if any): | |
{context} | |
Tweets for context: | |
{', '.join(sampled_contents)} | |
**Only generate the tweet. Do not include analysis, explanation, or any other content.** | |
""" | |
try: | |
response = self.groq_client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": "You are an expert in replicating writing and thinking patterns."}, | |
{"role": "user", "content": prompt}, | |
], | |
model="llama-3.1-70b-versatile", | |
temperature=1.0, | |
max_tokens=150, | |
) | |
tweet = response.choices[0].message.content.strip() | |
return tweet | |
except Exception as e: | |
return f"Error generating tweet: {str(e)}" | |