Jack_Clone / tweet_analyzer.py
Manasa1's picture
Update tweet_analyzer.py
a6a0895 verified
import os
from PyPDF2 import PdfReader
import pandas as pd
from dotenv import load_dotenv
import groq
import json
from datetime import datetime
from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import random
from joblib import Parallel, delayed
class TweetDatasetProcessor:
def __init__(self):
load_dotenv()
self.groq_client = groq.Groq(api_key=os.getenv('Groq_api'))
self.tweets = []
self.personality_profile = {}
self.vectorizer = TfidfVectorizer(stop_words='english')
self.used_tweets = set() # Track used tweets to avoid repetition
@staticmethod
def _process_line(line):
"""Process a single line."""
line = line.strip()
if not line or line.startswith('http'): # Skip empty lines and URLs
return None
return {
'content': line,
'timestamp': datetime.now(),
'mentions': [word for word in line.split() if word.startswith('@')],
'hashtags': [word for word in line.split() if word.startswith('#')]
}
def extract_text_from_pdf(self, pdf_path):
"""Extract text content from PDF file."""
reader = PdfReader(pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def process_pdf_content(self, text):
"""Process PDF content and clean extracted tweets."""
if not text.strip():
raise ValueError("The uploaded PDF appears to be empty.")
lines = text.split('\n')
# Pass the static method explicitly
clean_tweets = Parallel(n_jobs=-1)(delayed(TweetDatasetProcessor._process_line)(line) for line in lines)
self.tweets = [tweet for tweet in clean_tweets if tweet]
if not self.tweets:
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")
# Save the processed tweets to a CSV
df = pd.DataFrame(self.tweets)
df.to_csv('processed_tweets.csv', index=False)
return df
def _extract_mentions(self, text):
"""Extract mentioned users from tweet."""
return [word for word in text.split() if word.startswith('@')]
def _extract_hashtags(self, text):
"""Extract hashtags from tweet."""
return [word for word in text.split() if word.startswith('#')]
def categorize_tweets(self):
"""Cluster tweets into categories using KMeans."""
all_tweets = [tweet['content'] for tweet in self.tweets]
if not all_tweets:
raise ValueError("No tweets available for clustering.")
tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
kmeans = KMeans(n_clusters=5, random_state=1)
kmeans.fit(tfidf_matrix)
for i, tweet in enumerate(self.tweets):
tweet['category'] = f"Category {kmeans.labels_[i]}"
return pd.DataFrame(self.tweets)
def analyze_personality(self, max_tweets=50):
"""Comprehensive personality analysis using a limited subset of tweets."""
if not self.tweets:
raise ValueError("No tweets available for personality analysis.")
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
Core beliefs, emotional tendencies, cognitive patterns, etc.
Tweets for analysis:
{json.dumps(all_tweets, indent=2)}
"""
try:
response = self.groq_client.chat.completions.create(
messages=[
{"role": "system", "content": "You are an expert psychologist."},
{"role": "user", "content": analysis_prompt},
],
model="llama-3.1-70b-versatile",
temperature=0.1,
)
self.personality_profile = response.choices[0].message.content
return self.personality_profile
except Exception as e:
return f"Error during personality analysis: {str(e)}"
def analyze_topics(self, n_topics=None):
"""Extract and identify different topics the author has tweeted about."""
all_tweets = [tweet['content'] for tweet in self.tweets]
if not all_tweets:
return []
n_topics = n_topics or min(5, len(all_tweets) // 10)
tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
nmf_model = NMF(n_components=n_topics, random_state=1)
nmf_model.fit(tfidf_matrix)
topics = []
for topic_idx, topic in enumerate(nmf_model.components_):
topic_words = [self.vectorizer.get_feature_names_out()[i] for i in topic.argsort()[:-n_topics - 1:-1]]
topics.append(" ".join(topic_words))
return list(set(topics)) # Remove duplicates
def count_tokens(self, text):
"""Estimate the number of tokens in the given text."""
return len(text.split())
def generate_tweet(self, context="", sample_size=3):
"""Generate a new tweet by sampling random tweets and avoiding repetition."""
if not self.tweets:
return "Error: No tweets available for generation."
# Randomly sample unique tweets
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
if len(available_tweets) < sample_size:
self.used_tweets.clear() # Reset used tweets if all have been used
available_tweets = self.tweets
sampled_tweets = random.sample(available_tweets, sample_size)
sampled_contents = [tweet['content'] for tweet in sampled_tweets]
# Update the used tweets tracker
self.used_tweets.update(sampled_contents)
# Truncate personality profile to avoid token overflow
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile
# Construct the prompt
prompt = f"""Based on this personality profile:
{personality_profile_excerpt}
Current context or topic (if any):
{context}
Tweets for context:
{', '.join(sampled_contents)}
**Only generate the tweet. Do not include analysis, explanation, or any other content.**
"""
try:
response = self.groq_client.chat.completions.create(
messages=[
{"role": "system", "content": "You are an expert in replicating writing and thinking patterns."},
{"role": "user", "content": prompt},
],
model="llama-3.1-70b-versatile",
temperature=1.0,
max_tokens=150,
)
tweet = response.choices[0].message.content.strip()
return tweet
except Exception as e:
return f"Error generating tweet: {str(e)}"