GSoC-Super-Rapid-Annotator / multi_video_app.py
ManishThota's picture
Update multi_video_app.py
3b81f0b verified
raw
history blame
4.56 kB
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
import re
from typing import Dict, List
import os
import gc
import torch
import pandas as pd
from src.video_model import describe_video
from src.utils import parse_string, parse_annotations
# Function to save data to a CSV file using pandas
def save_to_csv(observations: List[Dict], output_dir: str = "outputs") -> str:
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Convert the list of dictionaries to a pandas DataFrame
df = pd.DataFrame(observations)
# Specify the CSV file path
csv_file = os.path.join(output_dir, "video_observations.csv")
# Save the DataFrame to a CSV file
df.to_csv(csv_file, index=False)
return csv_file
# Function to process a single video and return the observation data
def process_single_video(video_path, standing, hands, location, screen) -> Dict:
video_name = os.path.basename(video_path) # Extract video name from the path
query = "Describe this video in detail and answer the questions"
additional_info = []
if standing:
additional_info.append("Is the subject in the video standing or sitting?\n")
if hands:
additional_info.append("Is the subject holding any object in their hands?\n")
if location:
additional_info.append("Is the subject present indoors?\n")
if screen:
additional_info.append("Is the subject interacting with a screen in the background by facing the screen?\n")
end_query = """Provide the results in <annotation> tags, where 0 indicates False, 1 indicates True, follow these example below\n:
<annotation>indoors: 0</annotation>
<annotation>standing: 1</annotation>
<annotation>hands.free: 0</annotation>
<annotation>screen.interaction_yes: 0</annotation>
"""
final_query = query + " " + " ".join(additional_info)
final_prompt = final_query + " " + end_query
# Assuming your describe_video function handles the video processing
response = describe_video(video_path, final_prompt)
final_response = f"<video_name>{video_name}</video_name>" + " \n" + response
# Parse the response to extract video name and annotations
parsed_content = parse_string(final_response, ["video_name", "annotation"])
video_name = parsed_content['video_name'][0] if parsed_content['video_name'] else None
annotations_dict = parse_annotations(parsed_content['annotation']) if parsed_content['annotation'] else {}
# Return the observation as a dictionary
return {'video_name': video_name, **annotations_dict}
# Function to process all videos in a folder
def process_multiple_videos(video_files: List[str], standing, hands, location, screen):
all_observations = []
for video_path in video_files:
observation = process_single_video(video_path, standing, hands, location, screen)
if observation['video_name']: # Only add valid observations
all_observations.append(observation)
else:
print("Error processing video:", video_path) # Log any errors
# Clear GPU cache
torch.cuda.empty_cache()
gc.collect()
# Save all observations to a CSV file and return the file path
csv_file = save_to_csv(all_observations)
return "Processing completed. Download the CSV file.", csv_file
# Gradio interface
def gradio_interface(video_files, standing, hands, location, screen):
video_file_paths = [video.name for video in video_files] # Extract file paths from uploaded files
return process_multiple_videos(video_file_paths, standing, hands, location, screen)
# Inputs
video_files = gr.File(file_count="multiple", file_types=["video"], label="Upload multiple videos")
standing = gr.Checkbox(label="Standing")
hands = gr.Checkbox(label="Hands Free")
location = gr.Checkbox(label="Indoors")
screen = gr.Checkbox(label="Screen Interaction")
# Outputs
response = gr.Textbox(label="Status")
download_link = gr.File(label="Download CSV")
# Gradio interface setup
interface = gr.Interface(
fn=gradio_interface,
inputs=[video_files, standing, hands, location, screen],
outputs=[response, download_link],
title="GSoC Super Rapid Annotator - Batch Video Annotation",
description="Upload multiple videos and process them sequentially, saving the results to a downloadable CSV file.",
theme=gr.themes.Soft(primary_hue="red", secondary_hue="red"),
allow_flagging="never"
)
# Launch interface
interface.launch(debug=False)