Spaces:
Sleeping
Sleeping
File size: 5,674 Bytes
cf62053 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import hashlib
import json
import logging
import os
import time
from pathlib import Path
import io
import librosa
import maad
import numpy as np
from inference import slicer
import parselmouth
import soundfile
import torch
import torchaudio
from hubert import hubert_model
import utils
from models import SynthesizerTrn
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
def resize2d_f0(x, target_len):
source = np.array(x)
source[source < 0.001] = np.nan
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
source)
res = np.nan_to_num(target)
return res
def get_f0(x, p_len,f0_up_key=0):
time_step = 160 / 16000 * 1000
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
time_step=time_step / 1000, voicing_threshold=0.6,
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
pad_size=(p_len - len(f0) + 1) // 2
if(pad_size>0 or p_len - len(f0) - pad_size>0):
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
f0 *= pow(2, f0_up_key / 12)
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int)
return f0_coarse, f0
def clean_pitch(input_pitch):
num_nan = np.sum(input_pitch == 1)
if num_nan / len(input_pitch) > 0.9:
input_pitch[input_pitch != 1] = 1
return input_pitch
def plt_pitch(input_pitch):
input_pitch = input_pitch.astype(float)
input_pitch[input_pitch == 1] = np.nan
return input_pitch
def f0_to_pitch(ff):
f0_pitch = 69 + 12 * np.log2(ff / 440)
return f0_pitch
def fill_a_to_b(a, b):
if len(a) < len(b):
for _ in range(0, len(b) - len(a)):
a.append(a[0])
def mkdir(paths: list):
for path in paths:
if not os.path.exists(path):
os.mkdir(path)
class VitsSvc(object):
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.SVCVITS = None
self.hps = None
self.speakers = None
self.hubert_soft = utils.get_hubert_model()
def set_device(self, device):
self.device = torch.device(device)
self.hubert_soft.to(self.device)
if self.SVCVITS != None:
self.SVCVITS.to(self.device)
def loadCheckpoint(self, path):
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
self.SVCVITS = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
**self.hps.model)
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.SVCVITS, None)
_ = self.SVCVITS.eval().to(self.device)
self.speakers = self.hps.spk
def get_units(self, source, sr):
source = source.unsqueeze(0).to(self.device)
with torch.inference_mode():
units = self.hubert_soft.units(source)
return units
def get_unit_pitch(self, in_path, tran):
source, sr = torchaudio.load(in_path)
source = torchaudio.functional.resample(source, sr, 16000)
if len(source.shape) == 2 and source.shape[1] >= 2:
source = torch.mean(source, dim=0).unsqueeze(0)
soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
return soft, f0
def infer(self, speaker_id, tran, raw_path):
speaker_id = self.speakers[speaker_id]
sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
soft, pitch = self.get_unit_pitch(raw_path, tran)
f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
stn_tst = torch.FloatTensor(soft)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(self.device)
x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
audio = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
return audio, audio.shape[-1]
def inference(self,srcaudio,chara,tran,slice_db):
sampling_rate, audio = srcaudio
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
soundfile.write("tmpwav.wav", audio, 16000, format="wav")
chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
audio = []
for (slice_tag, data) in audio_data:
length = int(np.ceil(len(data) / audio_sr * self.hps.data.sampling_rate))
raw_path = io.BytesIO()
soundfile.write(raw_path, data, audio_sr, format="wav")
raw_path.seek(0)
if slice_tag:
_audio = np.zeros(length)
else:
out_audio, out_sr = self.infer(chara, tran, raw_path)
_audio = out_audio.cpu().numpy()
audio.extend(list(_audio))
audio = (np.array(audio) * 32768.0).astype('int16')
return (self.hps.data.sampling_rate,audio)
|