Spaces:
Sleeping
Sleeping
John Graham Reynolds
commited on
Commit
·
b660ba8
1
Parent(s):
0b0e7aa
updated compute fn and test cases
Browse files
app.py
CHANGED
@@ -7,30 +7,40 @@ from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_
|
|
7 |
from fixed_f1 import FixedF1
|
8 |
from pathlib import Path
|
9 |
|
10 |
-
def compute(input: pd.DataFrame):
|
11 |
-
|
12 |
-
metric._compute()
|
13 |
-
|
14 |
metric = FixedF1()
|
15 |
|
16 |
if isinstance(metric.features, list):
|
17 |
(feature_names, feature_types) = zip(*metric.features[0].items())
|
18 |
else:
|
19 |
(feature_names, feature_types) = zip(*metric.features.items())
|
20 |
-
|
21 |
gradio_input_types = infer_gradio_input_types(feature_types)
|
22 |
|
23 |
local_path = Path(sys.path[0])
|
24 |
test_cases = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ] # configure this randomly using randint generator and feature names?
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
space = gr.Interface(
|
27 |
fn=compute,
|
28 |
-
inputs=
|
|
|
29 |
headers=feature_names,
|
30 |
col_count=len(feature_names),
|
31 |
row_count=5,
|
32 |
datatype=json_to_string_type(gradio_input_types),
|
33 |
),
|
|
|
|
|
34 |
outputs=gr.Textbox(label=metric.name),
|
35 |
description=(
|
36 |
metric.info.description + "\nIf this is a text-based metric, make sure to wrap your input in double quotes."
|
@@ -39,7 +49,14 @@ space = gr.Interface(
|
|
39 |
title=f"Metric: {metric.name}",
|
40 |
article=parse_readme(local_path / "README.md"),
|
41 |
# TODO: load test cases and use them to populate examples
|
42 |
-
examples=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
)
|
44 |
|
45 |
space.launch()
|
|
|
7 |
from fixed_f1 import FixedF1
|
8 |
from pathlib import Path
|
9 |
|
|
|
|
|
|
|
|
|
10 |
metric = FixedF1()
|
11 |
|
12 |
if isinstance(metric.features, list):
|
13 |
(feature_names, feature_types) = zip(*metric.features[0].items())
|
14 |
else:
|
15 |
(feature_names, feature_types) = zip(*metric.features.items())
|
|
|
16 |
gradio_input_types = infer_gradio_input_types(feature_types)
|
17 |
|
18 |
local_path = Path(sys.path[0])
|
19 |
test_cases = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ] # configure this randomly using randint generator and feature names?
|
20 |
|
21 |
+
# configure this based on the input type, etc. for launch_gradio_widget
|
22 |
+
def compute(input_df: pd.DataFrame, feature_names: tuple[str]):
|
23 |
+
|
24 |
+
predicted = [int(num) for num in input_df[feature_names[0]].to_list()]
|
25 |
+
references = [int(num) for num in input_df[feature_names[1]].to_list()]
|
26 |
+
|
27 |
+
metric.add_batch(predictions=predicted, references=references)
|
28 |
+
|
29 |
+
outputs = metric._compute()
|
30 |
+
|
31 |
+
f"Your metrics are as follows: \n {outputs}"
|
32 |
+
|
33 |
space = gr.Interface(
|
34 |
fn=compute,
|
35 |
+
inputs=[
|
36 |
+
gr.Dataframe(
|
37 |
headers=feature_names,
|
38 |
col_count=len(feature_names),
|
39 |
row_count=5,
|
40 |
datatype=json_to_string_type(gradio_input_types),
|
41 |
),
|
42 |
+
feature_names
|
43 |
+
],
|
44 |
outputs=gr.Textbox(label=metric.name),
|
45 |
description=(
|
46 |
metric.info.description + "\nIf this is a text-based metric, make sure to wrap your input in double quotes."
|
|
|
49 |
title=f"Metric: {metric.name}",
|
50 |
article=parse_readme(local_path / "README.md"),
|
51 |
# TODO: load test cases and use them to populate examples
|
52 |
+
examples=[
|
53 |
+
[
|
54 |
+
# consider how to generalize this
|
55 |
+
parse_test_cases(test_cases, feature_names, gradio_input_types)[0],
|
56 |
+
feature_names
|
57 |
+
]
|
58 |
+
],
|
59 |
+
cache_examples=False
|
60 |
)
|
61 |
|
62 |
space.launch()
|