FixedPrecision / app.py
John Graham Reynolds
update name
cd5a29c
import sys
import gradio as gr
import pandas as pd
import numpy as np
import evaluate
from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme, parse_test_cases
# from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this
from fixed_precision import FixedPrecision
from pathlib import Path
added_description = """
See the 🤗 Space showing off how to combine various metrics here:
[MarioBarbeque/CombinedEvaluationMetrics](https://huggingface.co/spaces/MarioBarbeque/CombinedEvaluationMetrics)
In the specific use case of the `FixedPrecision` metric, one writes the following:\n
```python
precision = FixedPrecision(average=..., zero_division=...)
precision.add_batch(predictions=..., references=...)
precision.compute()
```\n
where the `average` parameter can be chosen to configure the way precision scores across labels are averaged. Acceptable values include `[None, 'micro', 'macro', 'weighted']` (
or `binary` if there exist only two labels). Similarly, the `zero_division` parameter "Sets the value to return when there is a zero division". Options include:
{`“warn”`, `0.0`, `1.0`, `np.nan`}. Since "warn" can still result in an error, we fix to it NaN in this demo.\n
"""
metric = FixedPrecision()
if isinstance(metric.features, list):
(feature_names, feature_types) = zip(*metric.features[0].items())
else:
(feature_names, feature_types) = zip(*metric.features.items())
gradio_input_types = infer_gradio_input_types(feature_types)
local_path = Path(sys.path[0])
# configure these randomly using randint generator and feature names?
test_case_1 = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ]
test_case_2 = [ {"predictions":[9,8,7,6,5], "references":[7,8,9,6,5]} ]
# configure this based on the input type, etc. for launch_gradio_widget
def compute(input_df: pd.DataFrame, method: str):
metric = FixedPrecision(average=method if method != "None" else None, zero_division=np.nan)
cols = [col for col in input_df.columns]
predicted = [int(num) for num in input_df[cols[0]].to_list()]
references = [int(num) for num in input_df[cols[1]].to_list()]
metric.add_batch(predictions=predicted, references=references)
outputs = metric.compute()
return f"The precision score for these predictions is: \n {outputs}"
space = gr.Interface(
fn=compute,
inputs=[
gr.Dataframe(
headers=feature_names,
col_count=len(feature_names),
row_count=5,
datatype=json_to_string_type(gradio_input_types),
),
gr.Radio(
["weighted", "micro", "macro", "None", "binary"],
label="Averaging Method",
info="Method for averaging the precision score across labels. \n `binary` only works if you are evaluating a binary classification model."
)
],
outputs=gr.Textbox(label=metric.name),
description=metric.info.description + added_description,
title="FixedPrecision Metric", # think about how to generalize this with the launch_gradio_widget - it seems fine as is really
article=parse_readme(local_path / "README.md"),
examples=[
[
parse_test_cases(test_case_1, feature_names, gradio_input_types)[0], # notice how we unpack this for when we fix launch_gradio_widget
"weighted"
],
[
parse_test_cases(test_case_2, feature_names, gradio_input_types)[0],
"micro"
],
],
cache_examples=False
)
space.launch()