John Graham Reynolds commited on
Commit
9739d7b
·
1 Parent(s): 677fc21

add app module

Browse files
Files changed (1) hide show
  1. app.py +83 -3
app.py CHANGED
@@ -1,8 +1,88 @@
 
1
  import gradio as gr
 
 
 
 
 
 
 
2
 
 
 
 
3
 
4
- def greet(name):
5
- return 'Hello, ' + name + '!'
6
 
 
 
7
 
8
- gr.Interface(fn=greet, inputs='text', outputs='text').launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
  import gradio as gr
3
+ import pandas as pd
4
+ import numpy as np
5
+ import evaluate
6
+ from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme, parse_test_cases
7
+ # from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this
8
+ from fixed_precision import FixedPrecision
9
+ from pathlib import Path
10
 
11
+ added_description = """
12
+ See the 🤗 Space showing off how to combine various metrics here:
13
+ [MarioBarbeque/CombinedEvaluationMetrics](https://huggingface.co/spaces/MarioBarbeque/CombinedEvaluationMetrics)
14
 
15
+ In the specific use case of the `FixedPrecision` metric, one writes the following:\n
 
16
 
17
+ ```python
18
+ precision = FixedPrecision(average=..., zero_division=...)
19
 
20
+ precision.add_batch(predictions=..., references=...)
21
+ precision.compute()
22
+ ```\n
23
+
24
+ where the `average` parameter can be chosen to configure the way precision scores across labels are averaged. Acceptable values include `[None, 'micro', 'macro', 'weighted']` (
25
+ or `binary` if there exist only two labels). Similarly, the `zero_division` parameter "Sets the value to return when there is a zero division". Options include:
26
+ {`“warn”`, `0.0`, `1.0`, `np.nan`}. Since "warn" can still result in an error, we fix to it NaN in this demo.\n
27
+ """
28
+
29
+ metric = FixedPrecision()
30
+
31
+ if isinstance(metric.features, list):
32
+ (feature_names, feature_types) = zip(*metric.features[0].items())
33
+ else:
34
+ (feature_names, feature_types) = zip(*metric.features.items())
35
+ gradio_input_types = infer_gradio_input_types(feature_types)
36
+
37
+ local_path = Path(sys.path[0])
38
+ # configure these randomly using randint generator and feature names?
39
+ test_case_1 = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ]
40
+ test_case_2 = [ {"predictions":[9,8,7,6,5], "references":[7,8,9,6,5]} ]
41
+
42
+ # configure this based on the input type, etc. for launch_gradio_widget
43
+ def compute(input_df: pd.DataFrame, method: str):
44
+
45
+ metric = FixedPrecision(average=method if method != "None" else None, zero_division=np.nan)
46
+
47
+ cols = [col for col in input_df.columns]
48
+ predicted = [int(num) for num in input_df[cols[0]].to_list()]
49
+ references = [int(num) for num in input_df[cols[1]].to_list()]
50
+
51
+ metric.add_batch(predictions=predicted, references=references)
52
+ outputs = metric.compute()
53
+
54
+ return f"The precision score for these predictions is: \n {outputs}"
55
+
56
+ space = gr.Interface(
57
+ fn=compute,
58
+ inputs=[
59
+ gr.Dataframe(
60
+ headers=feature_names,
61
+ col_count=len(feature_names),
62
+ row_count=5,
63
+ datatype=json_to_string_type(gradio_input_types),
64
+ ),
65
+ gr.Radio(
66
+ ["weighted", "micro", "macro", "None", "binary"],
67
+ label="Averaging Method",
68
+ info="Method for averaging the precision score across labels. \n `binary` only works if you are evaluating a binary classification model."
69
+ )
70
+ ],
71
+ outputs=gr.Textbox(label=metric.name),
72
+ description=metric.info.description + added_description,
73
+ title=f"Metric: {metric.name}",
74
+ article=parse_readme(local_path / "README.md"),
75
+ examples=[
76
+ [
77
+ parse_test_cases(test_case_1, feature_names, gradio_input_types)[0], # notice how we unpack this for when we fix launch_gradio_widget
78
+ "weighted"
79
+ ],
80
+ [
81
+ parse_test_cases(test_case_2, feature_names, gradio_input_types)[0],
82
+ "micro"
83
+ ],
84
+ ],
85
+ cache_examples=False
86
+ )
87
+
88
+ space.launch()